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THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
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RÉSUMÉ

La compréhension des programmes est une activité clé au cours du développement et

de la maintenance des logiciels. Bien que ce soit une activité fréquente—même plus fré-

quente que l’écriture de code—la compréhension des programmes est une activité difficile et

la difficulté augmente avec la taille et la complexité des programmes. Le plus souvent, les

mesures structurelles—telles que la taille et la complexité—sont utilisées pour identifier ces

programmes complexes et sujets aux bogues. Cependant, nous savons que l’information lin-

guistique contenue dans les identifiants et les commentaires—c’est-à-dire le lexique du code

source—font partie des facteurs qui influent la complexité psychologique des programmes,

c’est-à-dire les facteurs qui rendent les programmes difficiles à comprendre et à maintenir par

des humains.

Dans cette thèse, nous apportons la preuve que les mesures évaluant la qualité du lexique

du code source sont un atout pour l’explication et la prédiction des bogues. En outre, la qua-

lité des identifiants et des commentaires peut ne pas être suffisante pour révéler les bogues

si on les considère en isolation—dans sa théorie sur la compréhension de programmes par

exemple, Brooks avertit qu’il peut arriver que les commentaires et le code soient en contra-

diction. C’est pourquoi nous adressons le problème de la contradiction et, plus généralement,

d’incompatibilité du lexique en définissant un catalogue d’Antipatrons Linguistiques (LAs),

que nous définissons comme des mauvaises pratiques dans le choix des identifiants résultant

en incohérences entre le nom, l’implémentation et la documentation d’une entité de program-

mation. Nous évaluons empiriquement les LAs par des développeurs de code propriétaire et

libre et montrons que la majorité des développeurs les perçoivent comme mauvaises pratiques

et par conséquent elles doivent être évitées. Nous distillons aussi un sous-ensemble de LAs

canoniques que les développeurs perçoivent particulièrement inacceptables ou pour lesquelles

ils ont entrepris des actions. En effet, nous avons découvert que 10% des exemples contenant

les LAs ont été supprimés par les développeurs après que nous les leur ayons présentés.

Les explications des développeurs et la forte proportion de LAs qui n’ont pas encore été

résolus suggèrent qu’il peut y avoir d’autres facteurs qui influent sur la décision d’éliminer

les LAs, qui est d’ailleurs souvent fait par le moyen de renommage. Ainsi, nous menons une

enquête auprès des développeurs et montrons que plusieurs facteurs peuvent empêcher les

développeurs de renommer. Ces résultats suggèrent qu’il serait plus avantageux de souligner

les LAs et autres mauvaises pratiques lexicales quand les développeurs écrivent du code

source—par exemple en utilisant notre plugin LAPD Checkstyle détectant des LAs—de sorte

que l’amélioration puisse se faire sur la volée et sans impacter le reste du code.



vi

ABSTRACT

Program comprehension is a key activity during software development and maintenance.

Although frequently performed—even more often than actually writing code—program com-

prehension is a challenging activity. The difficulty to understand a program increases with

its size and complexity and as a result the comprehension of complex programs, in the best-

case scenario, more time consuming when compared to simple ones but it can also lead to

introducing faults in the program. Hence, structural properties such as size and complexity

are often used to identify complex and fault prone programs. However, from early theories

studying developers’ behavior while understanding a program, we know that the textual in-

formation contained in identifiers and comments—i.e., the source code lexicon—is part of

the factors that affect the psychological complexity of a program, i.e., factors that make a

program difficult to understand and maintain by humans.

In this dissertation we provide evidence that metrics evaluating the quality of source code

lexicon are an asset for software fault explanation and prediction. Moreover, the quality of

identifiers and comments considered in isolation may not be sufficient to reveal flaws—in

his theory about the program understanding process for example, Brooks warns that it may

happen that comments and code are contradictory. Consequently, we address the problem of

contradictory, and more generally of inconsistent, lexicon by defining a catalog of Linguistic

Antipatterns (LAs), i.e., poor practices in the choice of identifiers resulting in inconsistencies

among the name, implementation, and documentation of a programming entity. Then, we

empirically evaluate the relevance of LAs—i.e., how important they are—to industrial and

open-source developers. Overall, results indicate that the majority of the developers perceives

LAs as poor practices and therefore must be avoided. We also distill a subset of canonical

LAs that developers found particularly unacceptable or for which they undertook an action.

In fact, we discovered that 10% of the examples containing LAs were removed by developers

after we pointed them out.

Developers’ explanations and the large proportion of yet unresolved LAs suggest that

there may be other factors that impact the decision of removing LAs, which is often done

through renaming. We conduct a survey with developers and show that renaming is not

a straightforward activity and that there are several factors preventing developers from re-

naming. These results suggest that it would be more beneficial to highlight LAs and other

lexicon bad smells as developers write source code—e.g., using our LAPD Checkstyle plugin

detecting LAs—so that the improvement can be done on-the-fly without impacting other

program entities.
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CHAPTER 1

INTRODUCTION

1.1 Context

Previous studies show that the main cost for the development of a software is spent on its

maintenance (Lientz et al., 1978; Lehman, 1980). Studies also show that during maintenance,

developers spend the majority of their time understanding source code (von Mayrhauser et al.,

1997; Standish, 1984; Tiarks, 2011). This leads to the observation that program comprehen-

sion is a key activity during the software life cycle. To understand the source code, developers

follow different exploration strategies. Researchers have been observing how developers ex-

plore code to study the different strategies and their effectiveness. Brooks (1983) presents

the process of program understanding as a top-down hypothesis driven approach in which

an initial and vague hypothesis is formulated—based on the developer’s knowledge about

the program domain or other related domains—and incrementally refined into more specific

hypotheses based on the information extracted from the program text and documentation.

Soloway et al. (1988) observe that a systematic strategy, i.e., reading code line-by-line, al-

ways results in correct enhancement whereas an opportunistic strategy results in correct

enhancement only half of the time. Corritore et Wiedenbeck (2001) observe that Object

Oriented (OO) programmers follow a top-down approach during early familiarisation with

the program but increasingly use a bottom-up approach in subsequent after. Robillard et al.

(2004) observe that a methodical investigation is more effective than the opportunistic one.

Regardless of which strategy developers use, they spend a considerable amount of time

reading program identifiers while exploring the source code. In fact, previous studies show

that more than 70% of the source code of a software consists of program identifiers (Deißen-

böck et Pizka, 2005) and, more important, that the source code contains 42% of the domain

terms (Haiduc et Marcus, 2008). This confirms the hypothesis of Brooks (1983) that iden-

tifiers and comments are part of the internal indicators for the meaning of a program. The

knowledge contained in source code identifiers is even more valuable when no other source

of documentation exists. Consequently, there has been a large amount of works exploring

the information contained in program identifiers and comments for various purposes. Pollock

et al. (2007) refer to this as Natural Language Program Analysis (NLPA) and define it as

the combination of natural language processing techniques with program analysis to extract

natural language information from the identifiers, literals, and comments of a program.
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For example, several approaches reconstruct a program domain knowledge by extracting

concepts from source code identifiers and–or comments (Anquetil et Lethbridge, 1998; Merlo

et al., 2003; Falleri et al., 2010; Abebe et Tonella, 2011). Others use identifiers and pro-

gram analysis to automatically generate source code documentation at different granularity

level—e.g., block (Sridhara et al., 2011), method (Sridhara et al., 2010), and class (Moreno

et al., 2013)—or to improve the code readability by inserting blank lines between different

algorithmic steps (Wang et al., 2014). Some researchers show that the semantics carried by

identifiers can be used to perform refactoring and re-modularization (Bavota et al., 2011,

2013).

Thus, it is reasonable to believe that the quality of the source code lexicon is of paramount

importance for program comprehension and any NLPA technique. On the basis of several

experiments, Shneiderman et Mayer (1975) observe a significantly better program compre-

hension by subjects using commented programs. A higher number of subjects located bugs

in commented programs than in not commented programs, although the difference is not sta-

tistically significant. They argue that program comments and mnemonic identifiers simplifies

the conversion process from the program syntax to the program internal semantic represen-

tation. Chaudhary et Sahasrabuddhe (1980) argue that the psychological complexity of a

program—i.e., the characteristics that make a program difficult to understand by humans—

is an important aspect of program quality. They identify several features that contribute

to the psychological complexity one of which is termed “meaningfulness”. They argue that

meaningful variable names and comments facilitate program understanding as they facili-

tate the relation between the program semantics and the problem domain. An experiment

with students using different versions of FORTRAN programs—with and without meaningful

names—confirmed the hypothesis.

Later, researchers deepened the studies on the nature of identifiers, i.e., their internal

structure (Caprile et Tonella, 1999, 2000), and on the use of abbreviations and single-letters

and their impact for program comprehension (Lawrie et al., 2006b, 2007b). Specific tools

have been developed to leverage the knowledge carried by identifiers and comments. For

example, researchers propose different techniques for identifier splitting (Enslen et al., 2009;

Lawrie et al., 2010; Guerrouj et al., 2013), expansion (Lawrie et Binkley, 2011; Guerrouj

et al., 2013), and Part Of Speech (POS) tagging (Binkley et al., 2011; Abebe et Tonella,

2010; Gupta et al., 2013).

Deißenböck et Pizka (2005) also define guidelines to construct high-quality identifiers and

Lawrie et al. (2006a) propose ways to detect violations of those guidelines. Inspired form

code smells (Fowler, 1999), Abebe et al. (2009b) define a catalog of Lexicon Bad Smells

(LBS) defined as potential lexicon construction problems, which could be solved by means of
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refactoring (typically renaming) actions. Abebe et al. (2011) show that such LBS negatively

impacts Information Retrieval (IR)-based concept location. Previous research also shows

that the quality of identifiers is an important factor for the quality of the project (Butler

et al., 2009, 2010; Buse et Weimer, 2010; Poshyvanyk et Marcus, 2006; Marcus et al., 2008).

However, sometimes the quality of identifiers considered in isolation may not be sufficient

to reveal flaws and one may need to consider the consistency among identifiers, documen-

tation, and implementation. In his theory about the process that programmers follow to

understand a program, Brooks (1983) explains that while trying to refine or verify a hypoth-

esis developers will sometimes need to inspect the code in detail, e.g., check the comments

against the code. Brooks warns that it may happen that comments and code are contradictory

and that the decision of which indicator to trust (i.e., comment or code) primarily depends

on the overall support of the hypothesis being tested rather than the type of the indicator

itself. This implies that when contradiction between code and comments occur, different de-

velopers may trust different indicators and thus have different interpretations of a program,

which may result in faults. Zhong et al. (2011) reveal real faults by automatically mining

resource usage specifications from Application Programming Interface (API) documentation

and checking them against the source code. Other approaches identify inconsistencies related

to resource locks and function calls (Tan et al., 2007), synchronizations (Tan et al., 2011),

null values and exceptions (Tan et al., 2012), actual and formal method parameters (Pradel

et Gross, 2013), lexicon of source code and high-level artifacts (De Lucia et al., 2011), and

method name and data/control-flow properties (Høst et Østvold, 2009).

The ultimate goal of defining measures for poor lexicon is to increase developers’ awareness

of the existence of such practices and help them to improve the quality of the source code

lexicon. In other words, we, researchers, hypothesize that developers will undertake an action

and, for example, rename a method if its name does not any more reflect its functionality.

However, from a study that we performed on LAs with developers of several project, we

observe that they removed LAs in 10% of the cases we pointed them out suggesting that there

may be other factors that prevent developers to rename. Antoniol et al. (2007) also observed

that the evolution of the source code lexicon is more stable compared to the structural

evolution of a project, i.e., the lexicon evolves less than the structure.

1.2 Problem Statement and Contributions

The research summarized above steered the definition of our thesis.
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Our thesis is that poor lexicon negatively impacts the quality of software, that

the quality of the lexicon depends on the quality of individual identifiers but also

on the consistency among identifiers from different sources (name, implementation,

and documentation), and that the definition of practices that result in poor quality

lexicon increases developer awareness and thus contributes to the improvement of

the lexicon.

To validate our thesis we first strengthen the evidence that measures evaluating the lexicon

quality are an asset for fault explanation and prediction. Then, we show that the quality of the

lexicon also depends on the consistency among identifiers. To this end, we define a catalog of

Linguistic Antipatterns (LAs) related to inconsistencies—among the name, implementation,

and documentation (e.g., comment) of a program entity—and we show that the majority of

the industrial and open-source developers that we surveyed perceived LAs as poor practices.

Finally, we perform a survey with developers to understand the factors that may prevent the

improvement of the lexicon, which is often performed through renaming.

In the subsequent sections we describe the contributions that allow us to validate our

thesis.

1.2.1 Evidence on the Relation between Identifier Quality and Source Code

Quality in terms of Fault Explanation and Prediction

Several factors contribute to the faultiness of a program entity. The structural complexity

of the source code is one of the factors and it is widely studied to predict fault prone entities.

Another factor that we believe contributes to the faultiness of entities is the source code

lexicon. In this dissertation, we provide evidence on the relation between lexicon quality and

source code quality in terms of fault explanation and prediction.

First, we define a measure, named High Entropy and High Context Coverage (HEHCC),

characterizing the dispersion of terms composing source code identifiers. Entropy charac-

terizes the physical dispersion of terms—i.e., in how many entities a term is used—while

the context coverage characterizes the conceptual dispersion of a term—i.e., how unrelated

are the entities in which the same term is used. We show that programming entities that

contain HEHCC terms—i.e., terms used in many entities and in different contexts—are more

fault prone. Using linear regression models, we also show that structural complexity metrics

such as Lines Of Code (LOC) only partially explains the information captured by the newly

defined lexicon metric.

We also show that adding existing LBS to structural metrics such as the Chidamber and

Kemerer object-oriented metrics suite (CK) improves the prediction of fault prone classes.

Using Principal Component Analysis (PCA) we compare the information captured by the
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two types of metrics—lexicon and structural—and show that LBS capture new information

compared to the CK metrics. Results also show that among the list of LBS, particularly poor

practices are overloaded identifiers, use of synonyms, and inconsistent use of terms.

Our contributions resulted in two conference publications:

— Venera Arnaoudova, Laleh Mousavi Eshkevari, Rocco Oliveto, Yann-Gaël Guéhéneuc,

and Giuliano Antoniol. “Physical and Conceptual Identifier Dispersion: Measures

and Relation to Fault Proneness”. In: Proceedings of the International Conference on

Software Maintenance (ICSM) - ERA Track. 2010, pp. 1–5. Best paper award.

— Surafel Lemma Abebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and

Yann-Gaël Guéhéneuc. “Can Lexicon Bad Smells improve fault prediction?” In: Pro-

ceedings of the Working Conference on Reverse Engineering (WCRE). 2012, pp. 235–

244.

1.2.2 Definition of Linguistic Antipatterns

Software antipatterns (Brown et al., 1998) are opposite to design patterns (Gamma et al.,

1994), i.e., they identify “poor” solutions to recurring design problems. For example, Brown’s

40 antipatterns describe the most common pitfalls in the software industry (Brown et al.,

1998). They are generally introduced by developers not having sufficient knowledge and–or

experience in solving a particular problem, or misusing good solutions, i.e., design patterns.

Inspired from software antipatterns, we define a new family of software antipatterns,

named Linguistic Antipatterns (LAs). LAs shift the perspective from the source code struc-

ture towards its consistency with the lexicon:

Linguistic Antipatterns (LAs) in software projects are recurring poor prac-

tices in the naming, documentation, and choice of identifiers in the implementa-

tion of an entity, thus possibly impairing program understanding.

The presence of inconsistencies can be particularly harmful for developers that can make

wrong assumptions about the code behavior or spend unnecessary time and effort to clarify

it when understanding source code for their purposes. Therefore, highlighting the presence

of LAs is essential for producing code that is easy to understand.

An example of a LA that we have named Attribute signature and comment are opposite

occurs in class EncodeURLTransformer of the Cocoon 1 project. The class contains an attribute

named INCLUDE_NAME_DEFAULT whose comment documents the opposite, i.e., a “Configuration

default exclude pattern”. Whether the pattern is included or excluded is therefore unclear

from the comment and name. Another example of a LA called “Get” method does not return

1. http://cocoon.apache.org

http://cocoon.apache.org
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occurs in class Compiler of the Eclipse 2 project where method getMethodBodies is declared.

Counter to what one would expect, the method neither returns a value nor clearly indicates

which of the parameters will hold the result.

The definition of LAs have resulted in the following conference publication:

— Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.

“A New Family of Software Anti-Patterns: Linguistic Anti-Patterns”. In: Proceedings

of the European Conference on Software Maintenance and Reengineering (CSMR).

2013, pp. 187–196.

1.2.3 Relevance of Linguistic Antipatterns to Developers

Although tools may detect instances of (different kinds of) bad practices, they may or

may not turn out to be actual problems for developers. For example, by studying the history

of projects Raţiu et al. (2004) showed that some instances of antipatterns, e.g., God classes

being persistent and stable during their life, could be considered harmless. To understand

whether LAs would be relevant for software developers, we must answer the following general

question:

— Do developers perceive LAs as indeed poor practices?

We empirically answer the general question stated above, by conducting two different

studies. In Study I, we showed to 30 developers an extensive set of code snippets from three

open-source projects, some of which contain LAs, while others do not. Participants were

external developers, i.e., people that have not developed the code under investigation, unaware

of the notion of LAs. The rationale here is to evaluate how relevant are the inconsistencies,

by involving people having no bias—neither with respect to our definition of LAs, nor with

respect to the code being analyzed. In Study II, we involved 14 internal developers from 8

projects (7 open-source and 1 commercial), with the aim of understanding how they perceive

LAs in projects they know, whether they would remove them, and how (if this is the case).

Here, we first introduce to developers the definition of the specific LA under scrutiny, after

which they provide their perception about examples of LAs detected in their project.

Results indicate that external and internal developers perceive LAs as poor practices

and therefore must be avoided—69% and 51% of the participants in Study I and Study II,

respectively. More important, 10% (5 out of 47) of the LAs shown to internal developers

during the study have been removed in the corresponding projects after we pointed them

out.

Our results are currently under review in the Journal of Empirical Software Engineering

(EMSE):

2. http://www.eclipse.org

http://www.eclipse.org
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— Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. “Linguistic An-

tipatterns: What They Are and How Developers Perceive Them”. Submitted for

review in Empirical Software Engineering (EMSE).

1.2.4 Factors that may Prevent the Improvement of the Source Code Lexicon:

A Study of Identifier Renaming

To understand whether developers evolve source code lexicon as they feel the need, we

perform a survey on their renaming habits. The survey involves 71 developers of industrial

and open-source projects. The main questions that the survey tackles are how often devel-

opers rename, whether they consider renaming as a straightforward activity, what are the

factors that may prevent them from renaming, and what are the types of renamings that

they consider worth recommending automatically.

Results show that renaming is a frequent activity that 39% of the participants perform

from a few times per week to almost every day. Only 8% of the participants consider renaming

to be straightforward. Some of the main factors that can prevent developers from renaming

are insufficient domain knowledge (85% of the participants), code ownership (79%), close

deadline (76%), the potential impact on other projects (52%), and the risk of introducing a

bug (35%).

The results of the study have been published in IEEE Transactions on Software Engi-

neering (TSE):

— Venera Arnaoudova, Laleh Eshkevari, Massimiliano Di Penta, Rocco Oliveto, Giuliano

Antoniol, and Yann-Gaël Guéhéneuc. “REPENT: Analyzing the Nature of Identifier

Renamings”. In: IEEE Transactions on Software Engineering (TSE), 40 (5), 2014,

pp. 502–532.

1.3 Organisation of the Dissertation

Figure 1.1 provides an overview of the dissertation chapters and relates them to the ques-

tions that drove this research and our major conclusions. The reminder of this dissertation

is organized as follows:

Chapter 2—Background: This chapter discusses the necessary background. It sum-

marizes the processing of the lexicon, the experiment process and particularly the planning

and analysis steps, and the source code and lexicon metrics used in this dissertation.

Chapter 3—Literature Review: This chapter discusses related work relevant to this

dissertation such as the quality of the lexicon and its relation with the software quality,
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Ch. 4: Identifier Term dispersion and Code Quality 

Ch. 5: Lexicon Bad Smells and Code Quality 

Ch. 6: Linguistic Antipatterns (LAs)

Ch. 7: Perception of External Developers

Ch. 8: Perception of Internal Developers

Ch. 9: Factors Preventing Lexicon Improvement

Yes, lexicon metrics are 
asset to fault explanation 
and prediction.

No, the quality of the 
lexicon also depends on 
the inconsistency among 
identifiers, comments, 
and implementation.

Several factors prevent 
developers from improving 
the lexicon quality.   Why developers did 

not remove all lexicon 
inconsistencies?

   Do lexicon metrics 
help to identify faulty 
entities?

Q

   Does the quality of 
the lexicon only 
depend on the quality 
of individual identifiers?

Q

Q

Figure 1.1 Overview of the dissertation chapters.

lexicon-related inconsistencies, and empirical studies investigating developers’ perception of

code smells.

Chapter 4—Identifier Term Dispersion and Code Quality: This chapter defines

a new metric combining the physical and conceptual dispersion of terms. We also show that

this metric, HEHCC, helps to explain software faults when combined with structural metrics

of complexity such as LOC.

Chapter 5—Lexicon Bad Smells (LBS) and Code Quality: This chapters uses

previously defined metrics to measure the quality of the lexicon, i.e., LBS, and investigates

whether adding this information to structural metrics such as the CK metrics improves the

prediction of fault prone classes.

Chapter 6—Linguistic Antipatterns (LAs): This chapter formulates the notion of

source code Linguistic Antipatterns (LAs), i.e., recurring poor practices in the naming, docu-

mentation, and choice of identifiers in the implementation of an entity and defines a catalog

of 17 types of LAs related to inconsistencies. We implement possible detection algorithms in

a prototype tool called Linguistic AntiPattern Detector (LAPD), which we use to study the

importance of the phenomenon.

Chapter 7—LAs: Perception of External Developers: This chapter reports the

design and results of Study I, i.e., external developers’ perception of LAs. It involves 30

developers and an extensive set of code snippets from three open-source projects, some of
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which containing LAs, while others not. Participants are not familiar with the code under

investigation and unaware of the notion of LAs. The rationale here is to evaluate how

relevant are the inconsistencies, by involving people having no bias—neither with respect to

our definition of LAs, nor with respect to the code being analyzed.

Chapter 8—LAs: Perception of Internal Developers: This chapter reports the

design and results of Study II, i.e., internal developers’ perception of LAs. We involve 14

developers from 8 projects (7 open-source and 1 commercial), with the aim of understanding

how they perceive LAs in projects they know, whether they would remove them, how (if

this is the case), and what causes LAs to occur. Here, we first introduce to developers the

definition of the specific LA under scrutiny, after which they provide their perception about

examples of LAs detected in their project.

Chapter 9—Factors Impacting the Improvement of the Lexicon: This chapter

investigates why internal developers remove only part of the inconsistencies that we pointed

them out. In particular, it reports the design and results of a survey on renaming—i.e., the

typical action of resolving LAs. 71 developers of industrial and open-source projects par-

ticipated in the survey. Our goal is to understand whether developers consider renaming a

straightforward activity and what are the factors that may prevent them from renaming.

Chapter 10—Conclusion and Future Directions: This chapter concludes the disser-

tation by summarizing the contributions of our work and outlining possible future directions.

Appendix A—LAs: Detection Algorithms: This chapter provides possible detection

algorithms for the catalogue of LAs defined in Chapter 6.

Appendix B—Studied Projects: This chapter provides details related to the projects

studied in this dissertation.
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CHAPTER 2

BACKGROUND

This section defines the necessary background for this dissertation. In particular, it defines

the steps to process the source code lexicon (Section 2.1), provides details on the different

steps of an experiment process (Section 2.2), and in particular the planning (Section 2.3)

and analysis and interpretation (Section 2.4) steps, and summarizes the metrics that we use

(Section 2.5).

2.1 Processing the Source Code Lexicon

In the subsequent paragraphs we provide details on the processing of source code lexi-

con. In particular, the process consists of the extraction of identifiers and comments from

program entities (Section 2.1.1), splitting identifiers into terms (Section 2.1.2), POS tagging

and parsing (Section 2.1.3), and establishing semantic relations among terms (Section 2.1.4).

2.1.1 Extraction

The extraction of identifiers and comments can be performed in many ways. One can

process programs as if they are text documents and filter out language keywords. Such

processing may be sufficient when one is not interested in knowing where identifiers come

from—i.e., method name, return type, etc. Another way to extract the lexicon is to use

a language specific parser that creates an Abstract Syntax Tree (AST) and to collect the

identifiers and comments from the AST nodes of interest. For Java for example, this can be

done using the Eclipse Java Development Tools (JDT). Finally, a third option would be to use

a tool that parses source code written in several programming languages and which transforms

it into an intermediate representation. One can then parse the intermediate representation

without worrying about parsing a programming language. We use this last option to extract

identifiers and comments from Java and C++ projects. In particular, we use the srcml

tool (Collard et al., 2003), which parses source code and produces an XML-based parse tree.

We use the tree to identify the various source code elements of interest—e.g., attribute name

and type, method name and parameters, etc. In addition, we can also extract from source

code other pieces of information needed for our analysis, i.e., the presence of control flow or

conditional statement, the usage of particular variables/parameters in conditional statements,

and exception handling. When encountering comments in the source code, we attach them
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to the entities that they precede. However, when a comment follows an entity declaration

and it starts on the same line then we attach it to the preceding entity.

2.1.2 Splitting

This step aims at identifying term composing identifiers. Thus, for example, the identifier

getMsg will be split into the two terms composing it: get and Msg. Note that a term can

be a dictionary word, an abbreviation, or an acronym. Terms composing identifiers are

glued using camelCase—i.e., each next word starts with upper case—and–or non-alphabetic

characters—e.g., underscore. For Java, splitting identifiers using camelCase and underscore

heuristics is largely sufficient (Madani et al., 2010). However, there are several techniques that

propose smarter splitting approaches (Enslen et al., 2009; Lawrie et Binkley, 2011; Guerrouj

et al., 2013), when no clear heuristic is used to compose words—e.g., getname—and when the

identifier contains acronyms and abbreviations, e.g., in cases such as cntrlPrnt.

2.1.3 POS Tagging and Parsing

In natural language, a word carries a specific meaning. Words are often grouped into

phrases which in turn can be combined to form sentences. By analogy with natural lan-

guage, to grasp the meaning of an identifier, one cannot rely only on the terms constituting

the identifier in isolation. For example, the term visible (from the identifier Javadoc-

NotVisibleReference) and the term hidden (from the identifier JavadocHiddenReference)

have opposite meaning, whereas the identifiers have the same meaning.

Thus, after identifiers have been split into terms, we must build a sentence out of the

terms, perform a POS analysis and parsing to identify that the terms visible and hidden

are both adjectives modifiers specifying the term reference and that the term visible is

negated (see Figures 2.1 and 2.2).

To parse identifiers and comments, we use Stanford CoreNLP (Toutanova et Manning,

2000)—a set of tools allowing to perform POS analysis and identify dependencies among

words. The Stanford CoreNLP classifies terms using the Penn Treebank Tagset (Marcus

et al., 1993), thus not only distinguishing between nouns, verbs, adjectives, and adverbs, but

also distinguishing between the different forms, e.g., plural noun, verb past participle, etc.
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6/26/2014 Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process 1/1

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

Javadoc not visible reference

Submit  Clear

Part-of-Speech:

Javadoc  not  visible  reference
NNP RB JJ NN

1

Named Entity Recognition:

Javadoc  not  visible  reference1

Coreference:

Javadoc  not  visible  reference1

Basic dependencies:

Javadoc  not   visible  reference
NNP RB JJ NN

neg
amod

dep

1

Collapsed dependencies:

Javadoc  not   visible  reference
NNP RB JJ NN

neg
amod

dep

1

Collapsed CC-processed dependencies:

Javadoc  not   visible  reference
NNP RB JJ NN

neg
amod

dep

1
Visualisation provided using the brat visualisation/annotation software. 

Copyright © 2011, Stanford University, All Rights Reserved.

Figure 2.1 Parsing the sentence

“Javadoc not visible reference” using

Stanford CoreNLP.

6/26/2014 Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process 1/1

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

Javadoc hidden reference

Submit  Clear

Part-of-Speech:

Javadoc  hidden  reference
NN JJ NN

1

Named Entity Recognition:

Javadoc  hidden  reference
Misc

1

Coreference:

Javadoc  hidden  reference1

Basic dependencies:

Javadoc  hidden  reference
NN JJ NN

amod
dep

1

Collapsed dependencies:

Javadoc  hidden  reference
NN JJ NN

amod
dep

1

Collapsed CC-processed dependencies:

Javadoc  hidden  reference
NN JJ NN

amod
dep

1
Visualisation provided using the brat visualisation/annotation software. 

Copyright © 2011, Stanford University, All Rights Reserved.

Figure 2.2 Parsing the sentence

“Javadoc hidden reference” using

Stanford CoreNLP.

As identifiers do not always follow well-formed grammatical structure, before applying

POS analysis using natural language tools we apply a sentence template. Different templates

have been proposed in the literature (Abebe et Tonella, 2010; Binkley et al., 2011). Binkley

et al. (2011) evaluate different templates and provide evidence that the List Item Template

template outperforms the other three templates they evaluated. Thus, for the identifier

inclusionPatterns the template produces inclusion patterns. However, if the first term is

a verb, as it is suggested according to Java standard for method names, we use a different

template, i.e., the verb template: “Try to <identifier terms>”. Note that a template is just

an aid provided to the POS tagger to guide its analysis. Thus, for the method name parse,

after applying the verb template we obtain the sentence Try to parse which we then pass to

the Stanford CoreNLP tool.

2.1.4 Analyzing Semantics

To find semantic relations between terms, one can use a domain specific ontology or a

general ontology. Domain specific ontologies require the time and effort of experts and thus

are not always available. General ontologies such as WordNet (Miller, 1995) exist for English

and can be used instead. Words in WordNet are organized based on their relations. Synonyms

are grouped into unordered sets, called synsets, which in turn are related using semantic and

lexical relations. Thus, using WordNet, we are able to identify semantic relations among

terms such as synonymy, antonymy, hyponymy, hypernymy, etc.

Recently, two approaches have been proposed towards automatically constructing domain

ontologies from software projects. For example, in their recent work Yang et Tan (2013)

propose an approach to mine semantically related words in a project or multiple projects

from the same domain. Similar work has been done by Howard et al. (2013) where the

authors mine semantically similar words across projects from multiple domains.

2.2 Experiment Process

Conducting an experiment involves several main steps (Wohlin et al., 2000):
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Definition: In this step, the objectives and the goal of the experiment must be defined.

Planning: During the planning, one must define the context of the experiment, select the

variables to study, select the subjects and objects, choose the design of the experiment,

and identify the threats to the validity.

Operation: This step consists of preparing the material, running the experiment, and

collecting the data.

Analysis and interpretation: In this step, the collected data is analyzed (using descrip-

tive statistics and data visualization techniques), possibly reduced, the statistical test

are performed, and the results are interpreted.

Presentation and package: Finally, the experiment is documented.

We provide more background on the planning and on the analysis and interpretation steps

in Sections 2.3 and 2.4, respectively.

2.3 Experiment Planning

The experiment planning is a fundamental step in the experiment process. In particular,

in this step, the experiment hypotheses are formally stated (Section 2.3.1), the variables are

selected (Section 2.3.2), and the threats to the validity are identified (Section 2.3.3).

2.3.1 Hypothesis Testing

Hypothesis testing is the basis of statistical analysis. During hypothesis testing, two

hypotheses must be formally stated as follows:

Null hypothesis (H0) States that there is no difference in the trends of two populations.

This is the hypothesis that one wants to reject.

Alternative hypothesis (H1) Is accepted when the null hypothesis is rejected. Accepting

the alternative hypothesis means that the difference between two populations is not

coincidental.

Hypothesis testing involves two types of errors:

Type-I-error (α) The error of rejecting H0 when it is true.

Type-I-error (β) The error failing to reject H0 when it is false.

Whether H0 is rejected or not depends on 1) the confidence of the rejection provided the

experimental data and 2) the minimal confidence required. Typically, in software engineering

a minimal confidence required is 95%, which means accepting maximum 5% Type-I-error—

i.e., α = 0.05. If the confidence of the rejection provided the experimental data is sufficient—

i.e., p − value ≤ α—then H0 is rejected in favour of H1. If H0 cannot be rejected, nothing
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can be said about the two populations. However, when H0 is rejected, the confidence of the

rejection is 1− p− value. In this dissertation we consider α = 0.05.

2.3.2 Variables

Variable selection is an important step in the experiment planning. There are two kinds

of variables: dependent and independent variables. A dependent variable, also called response

variable, is the variable that we are interested to study, i.e., we observe how it varies when

the independent variables change. The independent variables are the input variables that are

manipulated and controlled. The independent variables that vary to evaluate the impact on

the dependent variables are called factors, or exposure variables. The rest of the independent

variables that we account for are called control variables. Finally, a confounding variable is

a variable that changes systematically when one or more independent variables change, thus

providing an alternative explanation of the observed relation between the independent and

dependent variables.

2.3.3 Threats to Validity

Threats to validity deal with doubts that question the quality and accuracy of an exper-

imentation. A common classification involves four categories, namely threats to conclusion,

internal, construct, and external validities (Wohlin et al., 2000). For case studies, Yin (1994)

also discusses threats to reliability validity.

Threats to conclusion validity, sometimes referred to as statistical conclusion validity (Cook

et Campbell, 1979), concern the relation between the independent and dependent variables

and factors that may prevent us from drawing the correct conclusions. Examples of threats to

conclusion validity are the power of a statistical test (e.g., it may not be high enough to allow

us to reject the null hypothesis); violated assumptions of the statistical test (e.g., perform a

parametric test when the data is not normally distributed); reliability of the measures.

Threats to internal validity concern the relation between the independent and dependent

variables and factors that could have influenced the relation with respect to the causality.

Examples include confounding factors such as subjects becoming tired or motivated as time

passes, diffusion of information among different groups of subjects, etc.

Threats to construct validity concern the relation between theory and observation, and

they are mainly related to the design of the experiment and social factors. Threats to con-

struct validity of the design include the mono-operation bias, e.g., when a single subject is

considered. Social threats to construct validity include possible bias related to the experi-

menter and–or the subjects such as the experimenter bias and hypothesis guessing.
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Threats to external validity concern the generalizability of the findings outside the exper-

imental settings. Examples of threats to external validity include the selection of subjects

and–or objects that are not representative of the studied population.

Threats to reliability validity concern the ability to replicate a study with the same data

and to obtain the same results. Examples of threats to reliability validity include insufficient

details about the data collection and the analysis procedures.

2.4 Experiment Analysis and Interpretation

In the analysis and interpretation step of the experiment process, the data is often visu-

alized (Section 2.4.1) before any analysis. In Section 2.4.2, we provide background on the

prediction models used to model the dependent variable and in Section 2.4.3 we present the

measures used to evaluate those models. We also describe other measures for dependencies

(Section 2.4.4) and discuss confidence level and interval (Section 2.4.5).

2.4.1 Data Visualization

Box Plot

Boxplots are used to visualize the central tendency and dispersion of the data. Figure 2.3

depicts an example of a boxplot. A box is drawn to delimit the lower and upper quartiles

(i.e., 25% and 75% percentiles, respectively); the thick line in the box is the median. The

tails of the box represent the theoretical bounds of all data points provided that they have a

normal distribution.

Violin Plot

Violin plots (Hintze et Nelson, 1998) combine boxplots and kernel density functions, thus

providing a better indication of the shape of the distribution. Figure 2.4 shows two examples

of violin plots that if plotted with a boxplot produce the same result, i.e., both violin plots

correspond to Figure 2.3. Violin plots however, allow to observe a bimodal distribution of

the data on the left example shown in Figure 2.4. The dot inside the violin plot represents

the median; a thick line is drawn between the lower and upper quartiles; a thin line is drawn

between the lower and upper tails.

Figure 2.3 Example of a boxplot. Figure 2.4 Examples of violin plots.
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2.4.2 Prediction Models

Prediction models are used to model the relation between the dependent variable and the

independent variable(s).

Linear Regression

A linear regression model is used when there is a linear relation between a numeric de-

pendent variable Y and independent variables Xi. In its simplest version, it is given by the

formula:

Y = α + βX + ε

where ε is a random error in Y independent of X. α is the intercept and β is the slope of a

straight line that fits the data.

Logistic Regression

The multivariate logistic regression model is based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

where Xi are the independent variables, and 0 ≤ π ≤ 1 is a value on the logistic regression

curve. In a logistic regression model, the dependent variable π is commonly a dichotomous

variable, and thus, assumes only two values {0, 1}—e.g., it states whether an entity is faulty

(1) or not (0). The closer π(X1, X2, . . . , Xn) is to 1, the higher is the probability that the

entity contains a fault. A threshold is used in practice to decide on the cutoff point. In this

thesis, we use 0.5. The Ci are the estimated regression coefficients, the higher the absolute

value, the higher the contribution of the corresponding independent variable.

When performing multivariate regression (i.e., regression using more than one independent

variables) we must account for possible risk of multicollinearity (i.e., interaction among the

independent variables). A common way to deal with multicollinearity is to compute the

Variance Inflation Factors (VIF) for each independent variable in the regression model and

retain only those with low values—e.g., <=2.5 (Cataldo et al., 2009; Shihab et al., 2010).

Random Forest

Random Forest (Breiman, 2001) averages the predictions of a number of tree predictors

where each tree is fully grown and is based on independently sampled values. The large

number of trees avoids overfitting. Random Forest is known to be robust to noise and to



17

correlated variables. In Chapter 5 we use the function randomForest (package randomForest

from the R environment 1) with the number of trees being 500 (Weyuker et al., 2010).

Support Vector Machine

SVM is a machine learning technique that tries to maximize the margin of the hyperplane

separating different classifications. Some of the advantages of SVM include the possibility to

model linear and non-linear relations between variables and its robustness to outliers.

The formula for the Gaussian Radial Basis kernel function is:

k(xi, xj) = exp(−γ ∗ |xi − xj|2)

where xi and xj are two data points, and γ is a parameter to be estimated.

We used the Support Vector Machine model (package e1071 from the R environment) svm

(kernel=”radial”). This kernel showed good performance in previous works (Elish et Elish,

2008).

2.4.3 Performance Measures

In the literature, various metrics are used to evaluate the prediction capability of indepen-

dent variables and to compare prediction models (Zhou et Leung, 2006; Zimmermann et al.,

2007; Mende et Koschke, 2009; Hassan, 2009; Weyuker et al., 2010). We have categorized

these metrics into three groups: rank, classification, and error metrics. Below we present the

details of each category in the context of fault proneness of program entities.

Rank

Rank metrics sort the program entities based on the value of the dependent variable

assigned to each entity. Then a cumulative measure is computed using the actual values of

the dependent variable over the ranked entities to assess the model and–or the independent

variables. In our study, we consider two types of rank metrics: Popt and Fault Percentile

Average (FPA).

Popt is an extension of the Cost Effective (CE) measure defined by Arisholm et al. (2007).

Popt takes into account the costs associated with testing or reviewing an entity and the actual

distribution of faults, by benchmarking against a theoretically possible optimal model (Mende

et Koschke, 2009). It is calculated as 1 −∆opt, where ∆opt is the area between the optimal

1. http://www.r-project.org/
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and the predicted cumulative lift charts. The cumulative lift chart of the optimal curve is

built using the actual defect density of entities sorted in decreasing order of the defect density

(and increasing lines of code, in case of ties). The cumulative lift chart of the predicted curve

is built like the optimal curve, but with entities sorted in decreasing order of fault prediction

score.

FPA is obtained from the percentage of faults contained in the top m% of entities predicted

to be faulty. It is defined as the average, over all values of m, of such percentage (Weyuker

et al., 2010; Bell et al., 2011). On entities listed in increasing order of predicted numbers of

faults, FPA is computed as:

1

NK

K∑
k=1

(k ∗ nk)

where N is total number of actual faults in a project containing K entities, nk is the actual

number of faults in the entity ranked k (Weyuker et al., 2010).

In Chapter 5, we predict the probability of fault proneness of an entity instead of the

number of faults. Hence, we have adapted the metrics by using the predicted probability of

fault proneness to sort the entities, and 0 and 1 are used as a replacement of the number of

defects: 1 is used when an entity is actually faulty; 0 otherwise.

Classification

Predicting fault proneness of an entity is a classification problem. Hence, in various studies

the confusion matrix (shown in Table 2.1) is used as the basis for the evaluation of the models

and analyze the prediction capability of the independent variables. True Positives (TP) and

True Negatives (TN) are correct predictions; False Positives (FP) and False Negatives (FN)

are incorrect predictions. The following measures are computed using the confusion matrix:

Table 2.1 Confusion matrix (TP=True Positives, TN=True Negatives, FP=False Positives,
FN=False Negatives).

Actual faulty Actual not faulty

Predicted faulty TP FP
Predicted not faulty FN TN
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Accuracy (A) measures how accurately entities are classified as faulty and non-faulty by

the predictor. It is computed as the ratio of the number of entities that are correctly predicted

as faulty and non-faulty to the total number of entities:

A =
TP + TN

TP + TN + FP + FN

A score of 1 indicates that the model used for the prediction has classified all entities as

faulty and non-faulty correctly.

Precision (P) (sometimes referred to as correctness) indicates how well a predictor iden-

tifies the faulty entities as faulty. It is computed as the ratio of the correctly predicted faulty

entities to the total number of predicted faulty entities:

P =
TP

TP + FP

A prediction model is considered very precise if all entities predicted as faulty are actually

faulty, i.e., if P = 1.

Recall (R) (sometimes referred to as completeness) indicates how many of the actually

faulty entities are predicted as faulty. Recall is computed as the ratio of the number of

correctly predicted faulty entities to the total number of actually faulty entities:

R =
TP

TP + FN

F-measure (F) is a measure used to combine the above two inversely related classification

metrics—i.e., precision and recall—and it is computed as their harmonic mean:

F =
2 ∗ P ∗R
P +R

Matthew’s Correlation Coefficient (MCC) is a measure commonly used in the bioin-

formatics community to evaluate the quality of a classifier (Matthews, 1975). It is a quite

robust measure in the presence of unbalanced data. MCC is computed as:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The value of MCC ranges from −1 to 1. −1 indicates a complete disagreement while 1

indicates the opposite.
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Error

In the last category of the evaluation metric types, we have absolute error (E).

Absolute Error (E) is a measure based on the number of faults incorrectly predicted or

missed:

E =
K∑
k=1

|ŷk − yk|2

where ŷk is the predicted number of faults in entity k and yk the actual number of faults

(Hassan, 2009). In Chapter 5, we are interested in the fault proneness of an entity and not

in the number of faults it contains. Thus, we use 0 and 1, as a replacement of the number

of faults. 1 is used when an entity is actually faulty/predicted to be faulty and 0 otherwise.

Unlike the other evaluation metrics, for absolute error a value closer to 0 indicates better

prediction capability.

2.4.4 Dependency and Effect Size Measures

In this section we summarize techniques and measures of the dependency between vari-

ables and the strength of the relation, if any.

PCA

Principal Component Analysis (PCA) is a technique that uses solutions from linear al-

gebra to project a set of possibly correlated variables into a space of orthogonal Principal

Components (PC), or eigen vectors, where each PC is a linear combination of the original

variables. PCA is used to reveal hidden patterns that cannot be seen in the original space

and to reduce the number of dimensions. When using PCA it is a common practice to select

a subset of the principal components and discard those that explain only a small percentage

of the variance. For each principal component, PCA reports the coefficients of the attributes

on the corresponding eigen vector. Those coefficients are interpreted as the importance of

the attribute on the PC.

Pearson’s Product-moment Correlation

Pearson’s Correlation coefficient (r) is a parametric statistical test measuring dependency

between two variables. The r-value is between −1 and +1. If there is no correlation then r

would be 0. However, when r is 0 this only means that there is no linear correlation between

the two variables. The r coefficient requires the data to be normally distributed.
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Spearman’s Correlation

Spearman’s correlation coefficient (rs) is a non-parametric statistical test for dependency

between two variables. It is calculated using the ranks of the data rather than the actual

values. rs varies between -1 and +1. Spearman’s correlation is preferred for software design

metrics over the Pearson’s correlation as we are often dealing with skewed data (Briand et al.,

2000).

Prop Test

Prop Test (or Pearson’s chi-squared test) is a non-parametric statistical test used to

determine if there exist a relation between two variables by comparing proportions. The

input is provided as a contingency table and the values in each cell are assumed to be greater

than 5 (Sheskin, 2007).

Fisher’s Exact Test

Fisher’s Exact Test is a non-parametric statistical test used to determine whether two

categorical variables are independent by comparing their proportions. It is often used to

replace the Pearson’s chi-squared test for small samples.

Mann-Whitney Test

The Mann-Whitney (Wohlin et al., 2000)—also known as the two-sample Wilcoxon test—

is a non-parametric test used as an alternative to the two-sample t-test when the data is not

normally distributed. Given two samples, Mann-Whitney tests whether they come from the

same distribution (i.e., H0) based on their ranks rather than the data itself.

Odd Ratio (OR)

Odd Ratio (OR) measure the strength of the relation between variables. Consider two

binary random variables X and Y as shown in Table 2.2, where each cell represent the number

of observations for the respective values of X and Y . The odd ratio is defined as:

OR =
n11 ∗ n00

n10 ∗ n01

An OR = 1 means that the distribution of Y over X is equal. OR ≥ 1 (OR ≤ 1) means

that observations where Y=1 have higher (lower) chances to have X=1. For example, if Y is

the dependent variable measuring the fault proneness of a program entity and X is a boolean
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variable indicating whether the entity has poor lexicon, an OR = 2 would mean that entities

with poor lexicon have two times higher chances to be fault prone.

Cliff’s Delta

Cliff’s delta (d) effect size (Grissom et Kim, 2005)—also known as the dominance measure—

is a non-parametric statistic estimating whether the probability that a randomly chosen value

from a group (e.g., group 1) is higher than a randomly chosen value from another group

(e.g., group 2), minus the reverse probability. The value belongs to the range [−1, 1] and are

interpreted as follows: When d = 1 there is no overlap between the two groups and all values

from group 1 are greater than the values from group 2. When d = −1 there is again no

overlap between the two groups but all values from group 1 are lower than the values from

group 2. When d = 0 there is a complete overlap between the two groups and thus there is

no effect size, i.e., the chances that values from group 1 are greater than values from group

2 are equal to the chances the values being lower. Between 0 and 1 the magnitude of the

effect size is interpreted as follows: 0 ≤ |d| < 0.147: negligible, 0.147 ≤ |d| < 0.33: small,

0.33 ≤ |d| < 0.474: medium, 0.474 ≤ |d| ≤ 1: large.

2.4.5 Confidence Level and Confidence Interval

Confidence interval is defined as plus and minus a confidence value around the result. The

confidence level provides an indication of certainty. For example, if an approach exhibits a

precision of 55% with a confidence value of 5 and 99% confidence level, this means that we

are 99% sure that the true percentage is between 50% (i.e., 55− 5) and 60% (i.e., 55 + 5).

2.5 Metrics

A metric is a mapping between an attribute of an object and a value. During the exper-

iment planning step, when variables are selected, the metrics used to measure the variables

must also be selected.

2.5.1 Entropy

Shannon (Cover et Thomas, 2006) measures the amount of uncertainty, or entropy, of a

discrete random variable X as:

H(X) = −
∑
x∈κ

p(x) · log(p(x))
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Table 2.2 Contingency table for two binary random variables X and Y .

Y=1 Y=0

X=1 n11 n10

X=0 n01 n00

where p(x) is the mass probability distribution of the discrete random variable X and κ
is its domain. For κ containing only two possible values, i.e., κ = {x1, x2}, entropy is

maximized (i.e., H(X) = 1) when the uncertainty is largest—i.e., for p(x1) = p(x2) = 0.5—

and minimized (i.e., H(X) = 0) when there is absolute certainty—i.e., for p(x1) = 1 and

p(x2) = 0 or vice versa (i.e., p(x1) = 0 and p(x2) = 1).

2.5.2 Structural Code Metrics

Table 2.3 shows the structural metrics used in this dissertation. The list consists of the set

of well-known CK metrics (Chidamber et Kemerer, 1994), two metrics measuring the lack of

cohesion in methods (LCOM2 and LCOM5) defined by Briand et al. (1998), and two metrics

counting the number of declared attributes and methods (Lorenz et Kidd, 1994).

Table 2.3 List of considered structural metrics.

Acronym Description
CBO (Chidamber et Kemerer, 1994) Coupling between objects
DIT (Chidamber et Kemerer, 1994) Depth of Inheritance Tree
LCOM1 (Chidamber et Kemerer, 1994) Lack of COhesion in Methods 1
LCOM2 (Briand et al., 1998) Lack of COhesion in Methods 2
LCOM5 (Briand et al., 1998) Lack of COhesion in Methods 5
LOC (Chidamber et Kemerer, 1994) Line Of Code
NAD (Lorenz et Kidd, 1994) Number of Attributes Declared
NMD (Lorenz et Kidd, 1994) Number of Methods Declared
NOC (Chidamber et Kemerer, 1994) Number Of Children
RFC (Chidamber et Kemerer, 1994) Response For a Class
WMC (Chidamber et Kemerer, 1994) Weighted Methods per Class

2.5.3 Lexicon Bad Smells (LBS)

Abebe et al. (2009b) define a catalog 2 of Lexicon Bad Smells (LBS) (Abebe et al., 2009b)

as anomalies that reduce the quality of identifier names. Below we present a summary of the

LBS and illustrate them with an example.

2. The catalog is available online: http://selab.fbk.eu/LexiconBadSmellWiki/

http://selab.fbk.eu/LexiconBadSmellWiki/
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Extreme contraction refers to extremely short terms used in identifiers due to an ex-

cessive word contraction, abbreviation, or acronym. An example of such identifier is aSz

(a=array, sz=size). This rule does not apply to prefixes introduced due to the naming con-

ventions adopted in the project (e.g., m_ is a prefix used in the Hungarian notation to mark

attributes of a class), common programming and domain terms (e.g., msg, SQL, etc.), and

short dictionary words (e.g., on, it, etc.).

Inconsistent identifier use refers to two or more identifiers that refer to a concept in an

inconsistent way. Operationally, an identifier is considered inconsistent when it is contained

in another identifier of the same type (e.g., another class/method/attribute name), which is

found in the same container entity (e.g., package, class). In the example shown in Figure 2.5,

the attribute path is inconsistent as it is contained in two other identifiers absolute_path

and relative_path of the same type (i.e., also attributes) and defined in the same container

(i.e., class Documents).

class Documents {
private St r ing abso lute path ;
private St r ing r e l a t i v e p a t h ;
private St r ing path ; // path i s i n c o n s i s t e n t

}

Figure 2.5 Example of inconsistent identifier use.

Meaningless terms refers to metasyntactic identifier names like foo and bar.

Misspelling refers to misspelled words in an identifier.

Odd grammatical structure refers to identifiers constructed using inappropriate gram-

matical structure for the specific kind of program entity they represents (e.g., a class name

contains a verb, method names do not start with a verb, etc.). Figure 2.6 shows an example

of class and method identifier names that are grammatically incorrect.

class Compute // compute i s a verb {
public void add i t i on ( ) ; // a d d i t i o n i s a noun

}

Figure 2.6 Example of odd grammatical structure.
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Overloaded identifiers refers to identifiers that include more than one semantics and

hence multiple responsibilities of the respective program entities that they represent (e.g., a

method name contains two verbs). The method name create_export_list(), for example,

could refer to two tasks: creating and exporting a list.

Useless type indication refers to identifiers that provide redundant information about

their type. For example, the attribute name nameString in the attribute declaration String

nameString gives redundant information about its type. This rule does not apply for a static

attribute used to realize the singleton design pattern, which usually has the same name as

the class, and individual characters or groups of characters used to denote the type of the

variable, if these are prescribed in the adopted naming conventions (i.e., in the Hungarian

notation, i is a prefix used in identifiers of integer type).

Whole-part refers to a term used to name a concept that appears also in the name of its

properties or operations. Figure 2.7 shows the ambiguous and redundant use of the concept

account. Exceptions to this rule are a static attribute, used to realize the singleton design

pattern and constructor methods, as they have the same name as the class.

class Account {
int account ; //Ambiguous use
void computeAccount ( ) ;
// Account i s redundant in format ion

}

Figure 2.7 Example of whole-part.

Synonyms and similar identifiers refers to synonym or similar terms used to con-

struct the identifiers representing different entities declared in the same container, such that

differentiating between their responsibilities is difficult. An example of this LBS is the use of

the synonym terms copy and replica in identifiers idCopy and idReplica.

Terms in wrong context refers to using terms that pertain to the domain of another con-

tainer (e.g., package). This indicates that the entity named by such terms may be misplaced.

For example, in Figure 2.8 the class TypeDetector is wrongly placed in package collections

or incorrectly named as all the other classes that refer to detector are in package detectors.

No hyponymy/hypernymy in class hierarchies refers to an identifier representing

a child class in an inheritance hierarchy but is not hyponym of the identifier of its parent
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package c o l l e c t i o n s ;
class IntArray ;
class TypeDetector ;
package d e t e c t o r s ;
class MuonDetector ;
class PhosDetector ;
class HLTDetector ;

Figure 2.8 Example of terms in wrong context.

class. An example of such LBS is a class named Violin that extends the class Mammal. This

violation is hard to assess when a class identifier is constructed from more than one term or

contains abbreviations, contractions, or acronyms.

Identifier construction rules refers to identifiers that do not follow a standard naming

convention adopted in the project, prescribing the use of proper prefixes, suffixes, and term

separators. In a project that adopts the Hungarian notation, for example, an attribute that

does not start with one of the prefixes defined for the attributes (e.g., m_) is considered to

have this LBS.
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CHAPTER 3

LITERATURE REVIEW

This chapter discusses related work, concerning the importance of source code lexicon

(Section 3.1), the relationship between source code lexicon and software quality (Section 3.2),

the identification and analysis of lexicon-related inconsistencies (Section 3.3), and empirical

studies aimed at investigating developers’ perception of code smells (Section 3.4).

3.1 Importance of Source Code Lexicon

Takang et al. (1996) empirically investigate the effects of comments and use of abbre-

viations in program identifiers on program comprehension. Results show that commented

programs and programs containing full words identifiers are easier to understand.

Relf (2005) proposes a tool to dynamically assist developers in the choice of identifiers,

i.e., as part of their source code editor. The author performed an experiment to understand

whether developers (professionals and students) improve the quality of their identifiers when

they are provided with such dynamic feedback. The quality of identifiers is measured with

19 identifier-naming style guidelines such as the length of the identifier, the number of words,

whether is composed of English words etc. Results show that participants who used the

dynamic feedback produced identifiers with a statistically significant higher quality than

participants who did not have the tool.

Lawrie et al. (2006b, 2007b) empirically assess the quality of source code identifiers—

considering identifiers with full-words, single-letters, and abbreviation—and their impact on

program comprehension and developers’ short term memory. They show that better com-

prehension is achieved when full word identifiers are used rather than single letter identifiers.

They also show that in many cases abbreviations are as useful as the full word identifiers,

especially for women (Lawrie et al., 2006b). When considered in the light of limited human

short-term memory, well-chosen abbreviations may be preferable in some situations since

identifiers with fewer syllables are easier to remember (Lawrie et al., 2007b).

Lawrie et al. (2007a) define identifier quality as the use of natural language words, coherent

abbreviations, and common library identifiers. Their empirical investigation over open-source

and proprietary projects show that modern programs contain higher quality identifiers. They

also observe a difference between open-source and proprietary projects—open-source projects

include higher percentage of dictionary words while proprietary projects include more abbre-
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viations. Finally, they note that across programming languages, projects written in Java

include the highest percentage of dictionary words.

Binkley et al. (2009) perform an empirical study of the impact of identifier style on code

readability. Participants are first shown a sentence, then, in a subsequent screen they have to

choose the corresponding identifier. The authors are interested in the time and accuracy of

participants to find the identifiers written in different styles, namely, underscore and camel

case. Results show that the use of camel case leads to more accurate results. As for time,

they show that participants with no training need more time to find identifiers written in

camel case style but trained participants are faster in recognizing camel case style identifiers.

Abebe et al. (2009b) define a catalogue of LBS—i.e., anomalies in the construction of

source code identifiers—and their detection algorithms. Examples of LBS are extremely

short identifiers, identifiers using synonyms or similar words, identifiers with inappropriate

grammatical structure, and misspelled identifiers. Abebe et al. (2011) show that such LBS

negatively impacts IR-based concept location.

Buse et Weimer (2010) proposed to approximate human perception of code readability

(i.e., how easy a program is to understand) using different code features—such as number

of characters, length of variable names, or number of comments. The automated readabil-

ity measure that is built on those features is 80 percent effective in predicting readability

judgements. They find that the average line length and the average number of identifiers per

line are very important factors to readability. They also find that comments are moderately

correlated with the annotators’ notion of readability. However, the average identifier length

is not, in itself, a very predictive factor. They also show that more readable code is correlated

with fewer errors.

Discussion

We share with previous work the conjecture about the importance of the source code

lexicon. We contribute to the existing body of research by providing empirical evidence that

poor quality lexicon is correlated with fault proneness (Chapters 4 and 5). We also define

a new family of poor practices related to the inconsistency of the lexicon (Chapter 6) and

evaluate them by industrial and open-source developers (Chapters 7 and 8).

3.2 Lexicon Quality and Code Quality

Butler et al. (2009) analyze the relation between naming conventions and code quality.

They evaluate the quality of identifiers in eight open-source Java libraries using 12 naming

conventions. They show that there exists a statistically significant relation between flawed
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identifiers (i.e., violating at least one convention) and code quality. Code quality is mea-

sured in terms of the anomalies reported by FindBugs (Hovemeyer et Pugh, 2004)—a static

analysis tool that reports bug patterns.

Butler et al. (2010) study the relation between the quality of identifiers and the quality of

the source code. Identifier quality is measured with naming conventions such as capitalisation

anomalies, the length of identifiers, the use of dictionary use, etc. The authors measure

code quality considering different factors, namely, cyclomatic complexity (McCabe, 1976),

maintainability index (Welker et al., 1997), code readability (Buse et Weimer, 2008), and

anomalies as reported by FindBugs. Results show that poor quality identifier names are

strongly associated with more complex, less readable, and less maintainable source code.

Buse et Weimer (2010) seek to understand if there exist a correlation between the read-

ability metric that they define and software faults. To this end, the authors analyse the

correlation between the readability metric with i) defects reported by FindBugs (Hove-

meyer et Pugh, 2004), ii) code churn, and 3) defects mined from messages in the projects’

Version Control System (VCS). Overall, they show that more readable code is correlated

with fewer faults and is less likely to change.

Poshyvanyk et Marcus (2006) and Marcus et al. (2008) show that the conceptual measures

of coupling and cohesion (Cocc and C3) capture new dimensions not captured by the corre-

sponding families of structural metrics, i.e., structural coupling and cohesion respectively.

Binkley et al. (2007) predict the number of faults with QALP (Lawrie et al., 2006c), LOC,

and Source Lines Of Code (SLOC). QALP measures the similarity between method’s code

and comment.

Discussion

We share with the above works the conjecture that linguistic information is important

and that its quality correlates with the quality of the code. Our work mainly differs from

those previous works by showing that linguistic information captures a new dimension with

respect to other types of metrics such as structural metrics. Thus, our work is closer to the

works of Poshyvanyk et Marcus (2006), Marcus et al. (2008), and Binkley et al. (2007). The

most notable difference between our approach and those works is the metrics used to capture

linguistic information, i.e., we measure linguistic information with HEHCC and LBS. We

evaluate the additional information that HEHCC and LBS bring compared to LOC and the

CK (Chapters 4 and 5, respectively).
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3.3 Lexicon Inconsistencies

Deißenböck et Pizka (2005) provide guidelines for the production of high-quality identi-

fiers. Using bijective mappings between concepts and identifiers, they define rules for concise

and consistent naming. Thus, the use of homonyms and synonyms leads to inconsistent iden-

tifiers as one identifier represents more than one concepts (homonymy) or multiple identifiers

represent the same concept (synonymy). An identifier is considered concise if it corresponds

to the most specific concept in the set of domain concepts. To support developers to fol-

low these rules, Deißenböck and Pizka propose a tool supported Identifier dictionary

(IDD). Such a dictionary contains the lists of identifiers that are used as well as additional

information such as the type associated with it and a description provided by the developers.

One is then able to browse the existing identifiers when searching for a name. The tool also

reports two inconsistencies when i) identical identifiers with different type exist in the project

and ii) when identifiers are declared but never used in the project.

Lawrie et al. (2006a) extend the work of Deißenböck and Pizka by proposing to automati-

cally detect violations of a restricted form of the synonym consistency and conciseness. They

define syntactic-synonym consistency and the syntactic conciseness based on identifier con-

tainment thus, handling situations where bijective mappings between concepts and identifiers

are not available.

Lawrie et al. (2006c) propose an IR based measure called QALP (Quality Assessment using

Language Processing) to assess software quality by the degree of correspondence between

source code comments and code. The correspondence is measured using the cosine similarity

between, on the one hand, the terms extracted from the function’s source code identifiers and,

on the other hand, the function’ leading and inline comments. Results show that functions

with higher cosine similarities receive higher human quality assessments.

Fluri et al. (2007) study whether source code and comments co-evolve. They find that

this is rarely the case. Particularly, the proportion of Javadoc changes that were induced by

either declaration changes or method body changes is less than 50%.

Ibrahim et al. (2012) study the relation between comment update practices and faults.

They find that not all inconsistent changes correlate with faults and that the most risky

comment update practices are those where the update practice suddenly changes, e.g., when

a method and its comment are updated inconsistently whereas they are usually undated

consistently (and vice versa).

Some of the LBS defined by (Abebe et al., 2009b) are defined as inconsistencies among

identifiers. Those are inconsistent identifier use (similar to the syntactic-synonym inconsis-

tency defined by Lawrie et al. (2006a)), whole-part (name a concept that appears also in
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the name of its properties or operation), synonyms and similar identifiers (use of different

terms to represent the same concept), terms in wrong context (terms more frequently used in

different entities/subsystems), and no hyponymy/hypernymy in class hierarchies (the terms

used in the super class are not a generalization of the terms used in the subclass).

Høst et Østvold (2009) identify naming bugs by mining inconsistencies between the

method’ name and its semantics. The authors characterise method semantics by mining

data flow and control flow properties, e.g., read/write fields, object creation, and return a

value. When analyzing method names, the authors abstract phrases generalizing method

names. Rules for good names are derived for each prevalent phrase in the method corpus.

They used a corpus of 100 Java projects to identify rules—common semantics—for methods

with similar names. Naming bugs are identified for methods that break those rules. The

detection is available via the Lancelot Eclipse plugin (Karlsen et al., 2012).

Lawrie et al. (2010) propose GenTest to normalize the vocabulary, i.e., to align the

vocabulary used in the source code with the one used in other software artifacts. Normal-

ization consists of splitting an identifier into its constituent parts and expanding each part

into a dictionary word. GenTest generates and tests all possible splits. Splits are scored

using metrics from three categories, namely those incorporating soft-word characteristics,

external, and internal information. When used only for splitting, the one with the highest

score is selected. When used for normalization (by Normalize), a ranked list of high-scoring

splits is used to prioritize the expansions considered. Later, Lawrie et Binkley (2011) fur-

ther improved Normalize using a machine translation technique, namely, the maximum

co-occurrence model (Gao et al., 2002). The idea is to guide the expansion using global and

local word co-occurrence.

Abebe et Tonella (2013) use the ontology extracted from source code (Abebe et Tonella,

2011) to help developers in choosing identifiers consistent with the concepts already used in

the project. To this aims, given partially written identifiers, they suggest and rank candidate

completions and replacements.

De Lucia et al. (2011) proposed an approach and tool—named COCONUT—to ensure

the consistency between the lexicon of high-level artifacts and of source code. In their ap-

proach, the inconsistent lexicon is measured in terms of textual similarity between high-level

artifacts traced to the code and the code itself. In addition, COCONUT uses the lexicon of

high-level artifacts to suggest appropriate identifiers.

Tan et al. (2007, 2011, 2012) proposed several approaches to detect inconsistencies be-

tween code and comments combining natural language processing tools and static or dynamic

program analysis. Specifically, @iComment (Tan et al., 2007) detects lock- and call-related

inconsistencies. @iComment first extracts assumptions in terms of rules from the method



32

comments. Then, using flow-sensitive and context-sensitive program analysis @iComment

searches for violations of the extracted rules. The validation made by developers confirmed

19 of the detected inconsistencies. @aComment (Tan et al., 2011) detects synchronization

inconsistencies related to interrupt context. @aComment extracts interrupt related formal

annotations, i.e., preconditions and postconditions, from both source code and comments

written in natural language. The source code analysis is similar to the one performed for

@iComment. The authors evaluated @aComment on the Linux Kernel, and the evaluation

by developers confirmed 7 previously unknown bugs. Both @iComment and @aComment

are applicable to C/C++ code. To detect inconsistencies between Javadoc and implementa-

tion, @tComment infers properties form Javadoc related to null values and exceptions; then,

using dynamic analysis—random test generation—@tComment searches for violations of

the inferred properties. Also in this case, Tan et al. reported the detected inconsistencies to

the developers who indeed resolved 5 of them.

Zhong et al. (2011) automatically generate specifications from API documentation con-

cerning resource usage, namely creation, lock, manipulation, unlock, and closure. The authors

then identify source code not complying with the generated specification and report it as de-

fect. An example of defect is manipulating a file resource but never closing it. The source

code analysis is performed by building control flow graphs. They contacted developers of the

open-source projects who confirmed 5 previously unknown defects.

Pradel et Gross (2013) propose a technique to detect anomalies in equally typed method

arguments. The authors search for inconsistencies between the formal and actual method

parameters. In particular, they extract identifiers from the method definition and the different

call sites. An anomaly in a call site occurs when the order suggested by the names of the actual

parameters is inconsistent with the order suggested by the names of the formal parameters

of the method. To reduce the number of false positives, an anomaly is only reported if

reordering the actual parameters fits better the order used in other call sites. A naming bug

is detected if the different call sites follow a naming scheme but not the method definition.

A prototype implementation for Java and C/C++ projects is provided as an Eclipse plugin.

Discussion

We share with Lawrie et al. (2006c) the conviction that the consistency between code

and comments is an important quality indicator. While they measure consistency in terms

of cosine similarity, the LAs defined in Chapter 6 of this dissertation focus on identifying

practices that break the consistency—e.g., Not implemented condition (B.1) and Method

signature and comment are opposite (C.2).

While the approaches proposed by Tan et al. (2007, 2011, 2012); Zhong et al. (2011)
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address inconsistencies specific to certain source code aspect/implementation technology—

i.e., lock/call, null values/exceptions, synchronization, and resource usage—LAs can be con-

sidered as complementary as they deal with generic naming and commenting issues that can

arise in OO code, specifically in methods and attributes.

We have in common some of the inconsistencies with the naming bugs defined by Høst et

Østvold (2009). In particular, we share “Set” method returns (A.3) and the general idea be-

hind“Get” method does not return (B.3) and Not answered question (B.4). However, the main

difference is that LAs defined here also consider attributes, identify inconsistencies between

comments and signatures, and identify opposite meaning inconsistencies. In addition, our

prototype detection tool, LAPD, considers the comment before reporting an inconsistency to

check whether the particular inconsistency is documented. For example, if the comment of a

method containing the LA “Set” method returns (A.3) documents that the returned value is

for example the old value of the attribute then LAPD will not report the method to the de-

veloper as the unusual behavior is documented and thus unlikely to cause confusion. Finally,

LAPD analyses source code whereas Lancelot works on bytecode thus can only analyze

code that compiles.

Finally, our contribution with respect to previous work is that we evaluate the rele-

vancy of the defined LAs by conducting two studies with developers—external and internal

developers—and show that the majority of them consider LAs as poor practices.

3.4 Developers’ Perceptions of Code Smells

Mäntylä et Lassenius (2006) conducted an empirical study on the subjective evaluation

of code smells that identify poorly evolvable structures in software. They asked industrial

software developers of a Finnish company to evaluate how much of each code smell existed

in a particular software module they are familiar with. The human evaluations were then

compared to the detected smells using code metrics. Overall, they noticed that demographic

data partially explains the variance of human evaluations. For example, they found that lead

developers saw more structured smells as opposed to the other developers who saw more code

smells.

Yamashita et Moonen (2013) performed a study—involving 85 professionals—with the aim

of investigating the perception of code smells, in particular, the degree of awareness of code

smells, their severity, and the usefulness of automatic tool support. Surprisingly, 23 of the

participants (32%) were not aware of such code smells. From the remaining 50 participants,

i.e., those that have at least heard of antipatterns and code smells, only 3 participants (6%)

were not concerned about the presence of code smells. 47 of the participants (94%) were
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concerned at a different level—10 (20%) were slightly concerned, 11 (22%) were somewhat

concerned, 19 (38%) were moderately concerned, and 7 (14%) were extremely concerned.

Yamashita and Moonen performed categorical regression analysis and found that the more

familiar participants are with antipatterns and code smells, the more concerned they are.

Palomba et al. (2014) also studied developers’ perceptions of code smells. They evaluated

examples of 12 code smells found in 3 open-source Java projects from the perspective of 34

external and internal developers. Their results show that there are some code smells that

developers do not perceive as poor practices. They also observed that for several code smells

experienced developers are more concerned than less experienced developers.

Discussion

We share with the previous works the interest in how developers perceive poor practices.

The main difference between previous works and our work is that while they evaluate prac-

tices that have been out there for more than a decade, we study practices that developers

were not at all familiar with—i.e., study with external developers (see Chapter 7)—or just

introduced to—i.e., study with internal developers (see Chapter 8). This could be one of

the reasons why, compared to the results of Yamashita et Moonen (2013), a lower number

of participants perceive LAs as ‘Poor’ or ‘Very Poor’—69% and 51% for external and in-

ternal developers respectively—as opposed to antipatterns and code smells—94% when only

considering participants familiar with antipatterns and code smells.
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CHAPTER 4

IDENTIFIER TERM DISPERSION AND CODE QUALITY

Highlight: Our hypothesis is that the poor quality of the source code lexicon

contributes to the faultiness of a program entity. We define a measure, named High

Entropy and High Context Coverage (HEHCC), characterizing the physical and

conceptual dispersions of terms composing source code identifiers. We investigate

whether program entities that contain HEHCC terms—i.e., terms used in many

places and in different contexts—are more fault prone. As it is well known that the

size of an entity is one of the best fault predictors, we also evaluate whether the

quality of the lexicon—as measured by terms dispersion—help structural metrics—

such as LOC—to explain software faults.

The identification of faulty source code entities is generally based on product metrics, such

as size, cohesion, or coupling (Gyimóthy et al., 2005; Liu et al., 2009; Marcus et al., 2008) as

well as process-oriented metrics, such as number of file changes (Zimmermann et al., 2007).

However, we believe that fault proneness is a complex phenomenon hardly captured solely

by structural characteristics of code entities. Indeed, several studies showed that identifiers

impact program comprehension (Takang et al., 1996; Deißenböck et Pizka, 2006; Haiduc et

Marcus, 2008; Binkley et al., 2009) and code quality (Marcus et al., 2008; Poshyvanyk et

Marcus, 2006; Butler et al., 2009). We concur with Deißenböck and Pizka’s observation that

proper identifiers improve quality and that identifiers should be used consistently (Deißenböck

et Pizka, 2006). Source code with high quality identifiers, carefully chosen and consistently

used in their contexts, likely ease program comprehension and support developers in building

consistent and coherent conceptual models.

In this chapter, we present, to the best of our knowledge, the first empirical study on the

relation between the terms composing identifiers and fault proneness. Terms are identifier

components (e.g., get and String are the terms composing getString). We conjecture that a

term should carry a single meaning in the context where it is used. Terms referring to different

concepts or used inconsistently in different contexts may increase the program comprehension

burden by creating a mismatch between the developers’ cognitive model and the intended

meaning of the term, thus ultimately increasing the risk of fault proneness.

Context definition is left intentionally blurred as it may stand for a code region (e.g., method

or attribute, class or component) as well as for the developers’ knowledge and mental models
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of any given code region or artifact. Misunderstanding impacts the cognitive process and is

difficult to quantify. We use linguistic information extracted from a given code region as a

surrogate of the developers’ mental models. More precisely, linguistic information extracted

from methods and attributes is used to quantify term entropy and context coverage. Term

entropy is derived from entropy in information theory and measures the “physical” dispersion

of a term in a program, i.e., the higher the entropy, the more scattered the term is across

entities. Term context coverage exploits IR (Baeza-Yates et Ribeiro-Neto, 1999) techniques

to measures the “conceptual” dispersion of the entities in which the term appears. The

higher the context coverage of a term, the more unrelated are the linguistic information and,

possibly, the concepts of the corresponding entities.

To support our conjecture that terms with high entropy and high context coverage may

help to locate fault-prone methods and attributes we report a preliminary case study on two

open-source projects: ArgoUML and Rhino. We show that there is a statistically significant

relation between term entropy, context coverage, and odds ratio that an entity is fault prone.

Thus, the contributions of this chapter can be summarized as follows:

— a novel measure characterizing the “physical” (entropy) and “conceptual” (context)

dispersions of terms;

— a preliminary empirical study showing the relation between entropy and context cov-

erage with fault proneness.

4.1 Measure the Physical and Conceptual Dispersion of Terms

To calculate term entropy and context coverage we extract identifiers, split them into

terms, and build a term-by-entity matrix. The generic entry ai,j of the term-by-entity matrix

denotes the number of occurrences of the ith term in the jth entity.

4.1.1 Term Entropy

Entropy of a discrete random variable measures the amount of uncertainty (Cover et

Thomas, 2006). To compute the term entropy, we consider terms as random variables with

some associated probability distributions. Given a term, its entries in the term-by-entity

matrix are the counts of term occurrences and thus by normalizing over the sum of its row

entries a probability distribution for each term is obtained. A normalized entry âi,j is then

the probability of the presence of the term ti in the jth entity. We then compute term entropy

as:

H(ti) = −
n∑
j=1

(âi,j) · log(âi,j) i = 1, 2, . . . ,m
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With term entropy, the more scattered among entities a term is, the closer to the uniform

distribution is its mass probability and, thus, the higher is its entropy. On the contrary, if a

term has a high probability to appear in few entities, then its entropy value will be low.

4.1.2 Term Context Coverage

The context coverage of term tk (where k = 1, 2, . . . ,m) is computed as the average

textual similarity of the contexts (here entities) containing tk:

CC(tk) = 1− 1

N

∑
ei,ej∈C

sim(ei, ej)

where C = {el|ak,p 6= 0} is the set of all entities in which term tk occurs, N is the number of

compared entities, and sim(ei, ej) represents the textual similarity between entities ei and ej

computed using Latent Semantic Indexing (LSI) (Deerwester et al., 1990), an advanced IR

method, with a subspace dimension fixed to 100. A low value of the context coverage of a

term means a high similarity between the entities in which the term appears, i.e., the term

is used in consistent contexts.

4.1.3 Aggregate Metric

In this preliminary investigation, we use the variable numHEHCC, number of high entropy

and high context coverage, associated with all entities and defined as:

numHEHCC(Ej) =
m∑
i=1

aij · ψ(H(ti) ≥ thH ∧ CC(ti) ≥ thCC)

where aij is the frequency in the term-by-entity matrix of term ti in entity Ej (j = 1, 2, . . . , n)

and ψ() is a function returning one if the passed Boolean value is true; zero otherwise. Thus,

numHEHCC represents the overall number of times any term with high entropy (value

above thH) and high context coverage (value above thCC) is found inside an entity. This

aggregate metric is used throughout the following case study to compute correlation, build

linear, logistic models, and contingency tables.

4.2 Case Study Design

It is well known that the size of an entity is one of the best fault predictors (Gyimóthy

et al., 2005). Thus, we first verify that numHEHCC is somehow at least partially comple-

mentary to size. Second, we believe that it is important to understand if entropy and context
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coverage help to locate entities likely to be fault prone when changed. Therefore, the case

study is designed to answer the following research questions:

RQ1: Do Term Entropy and Context Coverage Capture Characteristics Different from Size?

RQ2: Do Term Entropy and Context Coverage Help to Explain the Presence of Faults in an

Entity?

In RQ1, our goal is only to validate that the newly proposed metric brings information

complementary to the information captured by LOC. However, the real focus of this work is

to answer RQ2: evaluating whether the proposed metric, alone, can be used to explain fault

proneness. To answer RQ2, we assess a risk in terms of odds ratio, and thus, do not claim

any causation.

4.2.1 Objects

The context of the study are two open-source projects: Rhino and ArgoUML. The choice

of this two projects is twofold: they were previously used in other case studies, e.g., (Eaddy

et al., 2008), and a mapping between faults and entities (attributes and methods) is available

(Eaddy et al., 2008; Thummalapenta et al., 2010). We select the version of ArgoUML that

has the maximum number of faulty entities (v0.16) and one of the versions of Rhino with low

number of bugs (v1.4R3). Details regarding the projects can be found in Appendix B.

4.2.2 Data Collection

To calculate term entropy and context coverage, we extract identifiers found in class

attributes and methods (e.g., names of variables, methods, method parameters). We split

identifiers using a CamelCase splitter to build the term dictionary (e.g., getText is split into

get and text) and we retain terms whose length is at least two characters.

We reused the mapping between faults and entities (attributes and methods) from previ-

ous studies (Eaddy et al., 2008; Thummalapenta et al., 2010).

4.2.3 Analysis Method

RQ1: Do Term Entropy and Context Coverage Capture Characteristics Different

from Size?

To statistically analyze RQ1, we compute the correlation between the size measured

in LOC and numHEHCC. Then, we estimate the linear regression models between LOC

(independent variable) and numHEHCC (dependent variable). Finally, as an alternative

to the Analysis Of Variance (ANOVA) (Sheskin, 2007) for dichotomous variables, we build
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logistic regression models between fault proneness (explained variable) and LOC and the

proposed new metric (explanatory variables). Thus, we formulate the null hypothesis:

H01: numHEHCC does not capture a dimension different from LOC.

We expect that some correlation with size does exist: longer entities may contain more

terms with more chance to have high entropy and high context coverage.

RQ2: Do Term Entropy and Context Coverage Help to Explain the Presence of

Faults in an Entity?

For RQ2, we formulate the following null hypothesis:

H02: There is no relation between numHEHCC and fault proneness.

We use a Prop Test (Sheskin, 2007) to test the null hypothesis. If numHEHCC is

important to explain fault proneness, then the Prop Test should reject the null hypothesis

with a statistically significant p-value.

To quantify the effect size of the difference between entities with and without high values

of term entropy and context coverage, we also compute the odds ratio (OR) (Sheskin, 2007)

indicating the likelihood of faulty entities to contain terms with high entropy and context

coverage.

The term context coverage distribution is skewed toward high values. For this reason,

we use the 10% highest values of term context coverage to define a threshold identifying the

high context coverage property. We do not observe a similar skew for the values of term

entropy and, thus, the threshold for high entropy values is based on the standard outlier

definition—1.5 times the inter-quartile range above the 75% percentile (Fenton et Pfleeger,

1996). The thresholds values chosen for entropy and context coverage in our study are 4.17

and 0.79 for Rhino, and 4.9, and 0.83 for ArgoUML, respectively.

4.3 Results

We now discuss the results aiming at providing answers to our research questions.

4.3.1 RQ1: Do Term Entropy and Context Coverage Capture Characteristics

Different from Size?

Table 4.1 reports the results of Spearman’s correlation for both projects. As expected,

some correlation exists between LOC and numHEHCC. Despite a 40% correlation a linear

regression model built between numHEHCC (dependent variable) and LOC (independent

variable) attains an R2 lower than 19% (see Table 4.2). The R2 coefficient can be interpreted
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Table 4.1 Correlation tests.

Project Correlation p-values
ArgoUML 0.3646527 ≺ 2.2e− 16
Rhino 0.4467815 ≺ 2.2e− 16

as the percentage of variance of the data explained by the model and thus 1 − R2 is an

approximation of the unexplained variance of the model. Thus, Table 4.2 supports the

conjecture that LOC does not substantially explain numHEHCC. Correlation and linear

regression models can be considered as further verification that LOC and numHEHCC help

to explain different dimensions of fault proneness.

The relevance of numHEHCC in explaining faults is further supported by logistic re-

gression models. Table 4.3 reports the interaction model built between fault proneness (de-

pendent variable) and the explanatory variables LOC and numHEHCC. In both models,

MArgoUML and MRhino, the intercept is relevant as well as numHEHCC. Most noticeably

in Rhino the LOC coefficient is not statistically significant as well as the interaction term,

LOC : numHEHCC. This lack of significance is limited to Rhino: for ArgoUML, both LOC

and the interaction term are statistically significant. In both models, MArgoUML and MRhino,

the LOC coefficient is, at least, one order of magnitude smaller than the numHEHCC co-

efficient. This difference can partially be explained by the different range of LOC versus

numHEHCC. On average, in both projects, method size is below 100 LOC and most often

a method contains one or two terms with high entropy and context coverage. Thus, conserva-

tively, we can say that both LOC and numHEHCC have the same impact in terms of prob-

ability. In other words, the models in Table 4.3 support the conjecture that numHEHCC

helps to explain fault proneness. Based on the reported results, we can conclude that al-

though some correlation exists between LOC and numHEHCC, statistical evidence allows

us to reject, on both projects, the null hypothesis H01 .

4.3.2 RQ2: Do Term Entropy and Context Coverage Help to Explain the Pres-

ence of Faults in an Entity?

To answer RQ2, we perform prop-tests and test the null hypothesis H02 . Indeed, (i) if

prop-tests reveal that numHEHCC divides the population into two sub-populations and (ii)

if the sub-population with positive values for numHEHCC has an odds ratio bigger than

one, then numHEHCC may act as a risk indicator. For entities with positive numHEHCC,

it will be possible to identify those terms leading to high entropy and high context coverage,

identifying also their contexts and performing refactoring actions to reduce entropy and high

context coverage.
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Table 4.2 Linear regression models.

Variables Coefficients p-values

Rhino (R2 = 0.1891)
Intercept 0.038647 0.439
LOC 0.022976 ≺ 2e− 16

ArgoUML (R2=0.1665)
Intercept -0.0432638 0.0153
LOC 0.0452895 ≺ 2e− 16

Table 4.3 Logistic regression models.

Variables Coefficients p-values

MArgoUML

Intercept -1.688e+00 ≺ 2e− 16
LOC 7.703e-03 8.34e− 10
numHEHCC 7.490e-02 1.42e− 05
LOC:numHEHCC -2.819e-04 0.000211

MRhino

Intercept -4.9625130 ≺ 2e− 16
LOC 0.0041486 0.17100
numHEHCC 0.2446853 0.00310
LOC:numHEHCC -0.0004976 0.29788

Tables 4.4 and 4.5 show the confusion matrices for the two projects, together with the

corresponding p-value and odds ratios. The number of fault prone entities for Rhino being

very low, we also compute the Fisher exact test, which is commonly used as an alternative

for small samples. As the tables show, the null hypothesis H02 can be rejected.

We further investigate the odds ratio of entities containing two or more terms with high

entropy and high context coverage with those entities that only contain one such term. The

results are not statistically significant (with an OR close to one). These results suggest that

the difference between fault-prone entities and others is between not containing high entropy

and high context coverage terms and containing one or more such terms.

We also analyze the odds change for LOC and numHEHCC. For example, in the case

of ArgoUML for a fixed LOC, one unit increase of numHEHCC has almost the same odds

effect than an increase of 10 LOCs. In the case of Rhino, for a fixed size of entities, one unit

increase of numHEHCC has more effect than an increase of 50 LOCs.

4.4 Discussions

The results support the conjecture that term entropy and context coverage only partially

correlate with size. We also show that the number of high entropy and high context coverage
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Table 4.4 ArgoUML v0.16 confusion matrix.

ArgoUML numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 381 1706 2087
Fault free 977 9359 10336
Total 1358 11065 12423
Prop-test: p-value ≺ 2.2e− 16; Odds ratio = 2.139345

Table 4.5 Rhino v1.4R3 confusion matrix.

Rhino numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 6 8 14
Fault free 172 1438 1610
Total 178 1446 1624
Prop-test: p-value = 0.0006561; Odds ratio = 6.270349
Fisher’s Exact Test: p-value = 0.002258

terms contained in a method or attribute helps to explain the probability of it being faulty.

Furthermore, the odds ratio of being faulty for a method (or attribute) containing one or more

terms with high entropy and high context coverage is six and two for Rhino and ArgoUML,

respectively: if a Rhino method contains an identifier with a term having high entropy and

high context its probability of being faulty is six times higher; for ArgoUML the probability

of being faulty is two times higher.

4.4.1 Threats to Validity

Conclusion validity: Proper non-parametric statistical tests are used and the null hy-

pothesis is rejected with a significant p-value. We perform an additional test—Fisher exact

test—for Rhino as the number of faulty entities is small.

Internal validity: We use manually validated faults that have been used in previous studies

but we cannot claim that all fault prone entities have been correctly tagged or that no fault

prone entity has been missed. We used a threshold to identify terms with high entropy and

context coverage and compute numHEHCC, which could influence the results.

Construct validity: To compute term context coverage we use the textual similarity be-

tween entities using LSI. Although LSI is known to deal with synonymy and polysemy,

a domain ontology such as WordNet (Miller, 1995) may lead to a more accurate context

representation.

External validity: The study is limited to two projects, ArgoUML 0.16 and Rhino 1.4R3.

Results are encouraging but replications are needed to increase the generalizability of the

results achieved.
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Reliability validity: We use open-source projects whose source code is available. We

attempt to provide all necessary details to replicate the analysis.

4.5 Conclusion

In this chapter we introduced term entropy and context coverage to measure how scattered

terms are across program entities and how unrelated are the methods and attributes contain-

ing these terms. We provided mathematical definitions of term entropy and context coverage

and reported a preliminary case study involving two open-source projects: ArgoUML and

Rhino. We show that the newly proposed lexicon metric, i.e., numHEHCC, capture addi-

tional information not captured by LOC, i.e., a widely used metric for the size of an entity.

We also show that this additional information is an asset for fault explanation by showing

that the probability of an entity containing high entropy and high context coverage terms to

contain a fault is higher than the probability of an entity without such terms.
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CHAPTER 5

LEXICON BAD SMELLS (LBS) AND CODE QUALITY

Highlight: In Chapter 4, we provided evidence the quality of the lexicon—as mea-

sured by terms dispersion—helps structural metrics—such as LOC—to explain soft-

ware faults. In this chapter, we use different lexicon and structural measures and

take the analysis a step further—i.e., from fault explanation to fault prediction.

Thus our objective is to evaluate whether the quality of the lexicon—as measured

by LBS—help structural metrics—such as CK—to predict faulty classes.

The cost of identifying and fixing faults in a project already in production may be ex-

tremely high. To avoid such costs, developers spend a large portion of the project devel-

opment time on testing, to identify faulty classes prior to release. To assist developers in

this respect, various studies have been conducted in the research community measuring the

quality of the source code using structural metrics (Basili et al., 1996; Zhou et Leung, 2006;

Zimmermann et al., 2007; Mende et Koschke, 2009), process metrics (Nagappan et Ball, 2005;

Hassan, 2009) or previous faults (Kim et al., 2007; Weyuker et al., 2010). Structural metrics

are a lightweight alternative and they have been shown to have good performance for fault

prediction (D’Ambros et al., 2010).

The Chidamber and Kemerer object-oriented metrics suite (Chidamber et Kemerer, 1994)

is widely used as a representative of structural metrics. The underlying idea for using these

metrics is that if the code is complex, it will be also difficult to understand and maintain;

hence, it is susceptible to the introduction of faults. The CK metrics are based on information

about the structure of the source code. Besides the structural complexity, other researchers

have shown the importance of source code identifiers Deißenböck et Pizka (2006); Haiduc et

Marcus (2008); Butler et al. (2009). We concur with those works and believe that the lexicon

used in naming identifiers has an impact on the understandability of the code. To measure

the linguistic quality of identifiers we use the catalog of Lexicon Bad Smells (LBS) defined by

Abebe et al. (2009b). LBS are potential identifier construction problems that can compromise

the quality of the identifier and hence hinder program comprehension. We conjecture that

adding such information to the structural metrics used in fault proneness prediction will

improve the prediction. In this study, we investigate if this conjecture holds or not. Prior to

such investigation, as a sanity check we have assessed whether LBS add any new information

with respect to the CK metrics; results are positive. To conduct the prediction, we first
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identify the best model that can be obtained with the CK metrics and then we investigate

whether adding LBS to the CK metrics improves the prediction. The results indicate that

there is an improvement in the majority of the cases. Following these results, we also carry a

study to identify those LBS that contribute the most to the improvement of the prediction.

5.1 Case Study Design

Structural metrics measure different aspects of the code that can be used to predict fault

proneness of a class. In this study, we conjecture that the quality of identifiers has also

an impact on the fault proneness of a class, besides the structural metrics. To prove this

conjecture, we have formulated the following three research questions:

RQ1: Do LBS Bring New Information with Respect to Structural Metrics?

RQ2: Do LBS Improve Fault Prediction?

RQ3: Which LBS Help More to Explain Faults?

In RQ1, our goal is only to validate that the LBS bring information complementary to

the information captured by structural metrics. However, the real focus of this work is to

answer RQ2: evaluating whether LBS can improve fault prediction when used in addition

to structural metrics. Finally, as several LBS exist, in RQ3 we are interested to understand

which LBS are more helpful to predict faults and thus must be avoided.

5.1.1 Objects

For our case study, we have considered three open-source projects written in Java, namely

ArgoUML, Eclipse, and Rhino. As in Chapter 4, the choice of the projects was mainly driven

by the availability of fault prone data (Khomh et al., 2012). Details regarding the projects

can be found in Appendix B.

5.1.2 Analysis Method

In the following we describe the experimental setting of our study, starting with the

dependent and independent variables and then continuing with the setting for each research

question.

Variables

For building the prediction models we considered the following variables: As dependent

variable we use HASB, a dichotomous variable indicating whether a class is faulty or not.
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The overall set of independent variables consists of a set of structural metrics as considered

by Kpodjedo et al. (2011) (see Table 5.1) and the LBS defined by Abebe et al. (2009b) (see

Table 5.2).

Table 5.1 List of considered structural metrics.

Acronym Description
CBO Coupling between objects
DIT Depth of Inheritance Tree
LCOM1 Lack of COhesion in Methods 1
LCOM2 Lack of COhesion in Methods 2
LCOM5 Lack of COhesion in Methods 5
LOC Line Of Code
NAD Number of Attributes Declared
NMD Number of Methods Declared
NOC Number Of Children
RFC Response For a Class
WMC Weighted Methods per Class

Table 5.2 List of considered lexicon metrics.

Description
Extreme contraction
Inconsistent identifier use
Meaningless terms
Misspelling
Odd grammatical structure
Overloaded identifiers
Useless type indication
Whole-part
Synonyms and similar identifiers
Terms in wrong context
No hyponymy/hypernymy in class hierarchies
Identifier construction rules

RQ1: Do LBS Bring New Information with Respect to Structural Metrics?

In the first research question, RQ1, we investigate if LBS measure the same aspects of

the code as structural metrics or not. To carry out this investigation, following Marcus et al.

(2008), we use PCA. PCA aggregates the metrics into few orthogonal components called

principal components (PC). We use the information captured in the PCs to analyze and

answer RQ1. In particular, we analyze the following two aspects of the PCs: i) the number

of case study versions in which an LBS contributes to at least one retained PC, and ii) the
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number of case study versions in which an LBS is the major contributor to at least one

retained PC.

To select a subset of the PC we used a threshold of 95%—similar to Marcus et al. (2008).

That is, we retained the components that explain up to 95% of the variance. For each principal

component, we rank the attributes based of their importance (weight) and we apply a 10%

relative threshold to decide which attributes contribute to the component. In other words, if

the importance of attribute aj drops with more than 10% of the importance of the preceding

attribute ai, then aj and all other following attributes will be discarded for the particular

component. If LBS bring new information with respect to structural metrics then LBS will

be kept in the retained principal components and will give major contributions to them. To

answer this research question we analyze two aspects: i) the number of case study versions

in which an LBS contributes to at least one retained PC, and ii) the number of case study

versions in which an LBS is the major contributor of at least one retained PC.

RQ2: Do LBS Improve Fault Prediction?

In RQ2, we investigate if our conjecture holds by assessing the contribution of LBS, in

addition to the structural metrics, in improving the prediction capability of a model. To

assess the contribution of LBS, we carry out predictions using as independent variables, on

the one hand, only structural metrics, and on the other hand, structural metrics plus LBS.

We consider three models, namely Logistic Regression Model (LRM), Random Forest (RF),

and Support Vector Machine (SVM). The capability of prediction is then evaluated using

the performance measures described in Section 2.4.3. We then compare the results using the

achieved net improvements and the average delta percentage. Prior to the comparison of the

two sets of independent variables, we compare and select the best model in predicting fault

prone classes using only the CK metrics.

Settings When building a LRM we perform backward variable elimination and predict

using the retained variables. In addition, before prediction we control for multicollinearity

by removing variables with a VIF greater than 2.5 (Shihab et al., 2010; Cataldo et al., 2009).

The following settings are common for all models: As Gyimóthy et al. (2005) we standardize

all metrics before performing the calculations (i.e., zero mean and unit variance). Like Kamei

et al. (2010), for each type of model, we predict faulty classes in two configurations: within

the same version and for the next version. Prediction within the same version represents

scenarios in which there is no prior record of buggy classes while the latter represents scenarios

in which such data is available. When predicting within the same version, we use 10-fold

cross validation. For each configuration we build two models: one where the independent
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variables are the CK set of metrics alone and the second where the independent variables are

CK and LBS.

RQ3: Which LBS Help More to Explain Faults?

The last research question, RQ3, focuses on identifying those LBS that contribute the

most to the prediction of fault prone classes. To answer this research question, we use the

weights assigned to each LBS by the model and we compute the median rank of each LBS.

To decide which LBS best help for fault prediction we rank the attributes based on their

importance in the best model selected in RQ2. We then calculate the median rank across

the versions of the project and select the top three LBS separately for each project.

5.1.3 Data Collection

We reuse the data regarding the fault proneness of classes (i.e., dependent variable) that

have been previously published by Khomh et al. (2012). To collect the data for the indepen-

dent variables we proceed as follows. We calculate the set of CK metrics using the Primitives

Operators Metrics (POM) framework (Guéhéneuc et al., 2004). To identify LBS, we have

used a suite of tools called LBSDetectors 1 which have been developed for use in previous

studies (Abebe et al., 2009b, 2011).

5.2 Results

5.2.1 RQ1: Do LBS Bring New Information with Respect to Structural Metrics?

To answer this research question, we summarize the percentages of case study versions in

which an LBS contributes to at least one retained PC (Table 5.3) and the percentages of case

study versions in which an LBS is the major contributor to at least one retained PC, i.e., the

LBS was ranked first (Table 5.4). Table 5.5 shows in details the result of PCA for ArgoUML

v0.16. In particular, we show the weight and ranking (in parentheses) of the attributes after

the relative threshold is applied.

ArgoUML For all versions of ArgoUML we retained between 11 and 13 principal compo-

nents that explain at least 95% of the variance. Two LBS attributes were kept in at least

one PC in all versions and those are: inconsistent terms and useless types. Between them,

useless types was the major contributor of at least one PC in all versions.

1. http://selab.fbk.eu/LexiconBadSmellWiki/
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Rhino The number of components that explain at least 95% of the variance for Rhino is

the same as for ArgoUML. Five LBS attributes were kept in at least one PC in all versions

and those are: inconsistent terms, synonym similar, odd grammatical structure, overloaded

identifiers, and meaningless. As in ArgoUML, one LBS attribute was present as a major

contributor in all versions and this is overloaded identifiers.

Eclipse The number of retained PC is between 13 and 14. The six LBS that are present

in all versions are: inconsistent terms, odd grammatical structure, extreme contraction, over-

loaded identifiers, useless types, and meaningless. The majority of them (four) are ranked

first: inconsistent terms, extreme contraction, overloaded identifiers, and meaningless.

Overall All LBS were present in more than 50% of the analyzed projects. Inconsistent

terms was present in at least one dimension in all analyzed versions meaning that it is the

major LBS attribute that helps to explain a new variability dimension. Another different

variability dimension in most cases seems to be captured by overloaded identifiers and useless

types.

5.2.2 RQ2: Do LBS Improve Fault Prediction?

When dealing with multiple independent variables, we must account for possible corre-

lations among them. We compute the Spearman’s correlation coefficient (rs) between all

possible pairs of metrics for all metrics. In Table 5.6 we summarize the number of projects

for which each pair of metric has a statistically significant strong correlation—i.e., p-value

≤ 0.05 and rs ≥ 0.8 or rs ≤ −0.8—where the thresholds are based on previous studies (Al

Dallal et Briand, 2012)). The table shows only metrics with positive values, i.e., metrics for

which a statistically significant strong correlation is observed in at least one project. Results

are consistent with the results of RQ1 as the strongly correlated metrics are grouped into

one component (PC1 in Table 5.5).

For each evaluation metric, Table 5.7 shows the average values scored by the corresponding

model for both configurations for prediction (same and next version). CK metrics are used

to build the prediction models. The values in bold are the best values of the three models

Table 5.3 LBS retained in the principal components.

Project Misspelling Inconsistent Synonym Odd grammatical Extreme Overloaded Identifier Useless Meaningless
terms similar structure contraction identifiers construction types terms

Eclipse 0.0% 100.0% 40.0% 100.0% 100.0% 100.0% 80.0% 100.0% 100.0%
ArgoUML 66.7% 100.0% 50.0% 66.7% 66.7% 83.3% 83.3% 100.0% 16.7%

Rhino 87.5% 100.0% 100.0% 100.0% 75.0% 100.0% 62.5% 87.5% 100.0%

All 57.9% 100.0% 68.4% 89.5% 78.9% 94.7% 73.7% 94.7% 73.7%
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Table 5.4 LBS ranked first in the retained principal components.

Project Misspelling Inconsistent Synonym Odd grammatical Extreme Overloaded Identifier Useless Meaningless
terms similar structure contraction identifiers construction types terms

Eclipse 0.0% 100.0% 20.0% 20.0% 100.0% 100.0% 80.0% 80.0% 100.0%
ArgoUML 50.0% 83.3% 0.0% 16.7% 33.3% 83.3% 66.7% 100.0% 16.7%

Rhino 0.0% 87.5% 50.0% 0.0% 50.0% 100.0% 62.5% 62.5% 87.5%

Overall 15.8% 89.5% 26.3% 10.5% 57.9% 94.7% 68.4% 78.9% 68.4%

Table 5.5 Detailed results of PCA for ArgoUML v0.16.

PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Cumulative proportion 40.9% 51.8% 59.88% 65.54% 71.06% 76.2% 81.02% 85.29% 89.33% 92.91% 95.53%
CBO 0.275(9) 0.203 0.35 0.0741 0.0176 0.0994 0.0954 0.11 0.0853 0.0607 0.0953
DIT 0.0311 0.0551 0.123 0.13 0.772(1) 0.46 0.0998 0.338 0.0457 0.0665 0.107
LCOM1 0.281(7) 0.36 0.0835 0.0277 0.00268 0.0387 0.0503 0.0812 0.184 0.28 0.0641
LCOM2 0.278(8) 0.366 0.0879 0.0272 0.00323 0.0382 0.0507 0.0807 0.188 0.282 0.0685
LCOM5 0.111 0.307 0.00385 0.0976 0.206 0.269 0.0478 0.753(1) 0.35 0.16 0.0615
LOC 0.29(5) 0.15 0.367 0.0276 0.0123 0.0217 0.0729 0.165 0.0668 0.0341 0.134
NAD 0.21 0.101 0.442(1) 0.0404 0.0119 0.0138 0.0763 0.0568 0.368 0.0434 0.604(1)
NMD 0.338(1) 0.0988 0.0846 0.0403 0.0618 0.00984 0.0373 0.0147 0.0764 0.0998 0.108
NOC 0.0205 0.107 0.0854 0.386 0.428 0.774(1) 0.00912 0.113 0.132 0.0118 0.0585
RFC 0.296(4) 0.176 0.274 0.0458 0.0453 0.00323 0.0397 0.0971 0.0342 0.0189 0.0197
WMC 0.318(2) 0.12 0.286 0.0338 0.0116 0.0181 0.0958 0.0996 0.0384 0.0614 0.131
misspelling 0.24 0.201 0.187 0.207 0.255 0.0979 0.0973 0.0529 0.0174 0.211 0.571(2)
inconsistent terms 0.205 0.246 0.147 0.0116 0.0484 0.0543 0.383 0.29 0.189 0.6(1) 0.178
synonym similar 0.288(6) 0.314 0.102 0.00884 0.00461 0.000561 0.155 0.0958 0.0317 0.154 0.241
odd grammatical structure 0.305(3) 0.0148 0.28 0.013 0.048 0.0274 0.173 0.0301 0.0203 0.0892 0.152
extreme contraction 0.0772 0.253 0.266 0.592(1) 0.276 0.212 0.0624 0.166 0.336 0.288 0.15
overloaded identifiers 0.144 0.0224 0.00102 0.236 0.161 0.00659 0.802(1) 0.0575 0.00447 0.467 0.0241
identifier construction 0.14 0.416(1) 0.271 0.266 0.0227 0.143 0.0104 0.0399 0.41 0.139 0.299
useless types 0.0413 0.248 0.236 0.539(2) 0.0042 0.153 0.304 0.318 0.561(1) 0.186 0.00662

Table 5.6 Number of projects with statistically significant strong correlation.

CBO LCOM1 LCOM2 LOC NMD RFC
LCOM2 13
LOC 3 13
NMD 19 5 8
RFC 3 4 14 3
WMC 3 13 19 15 14
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considered for the given metric. For all projects, SVM scores first for the majority of the

evaluation metrics. Hence, we have based our investigation on the contribution of LBS to

the improvement of fault prediction using SVM.

Table 5.8 shows the number of versions in which CK plus LBS metrics improve, decrease

or keep the prediction unchanged, when compared to CK metrics alone. The last two columns

show the net improvement within/across versions and the average delta percentage of LBS

plus CK metrics over CK alone for the various evaluation metrics. Positive values of net

improvements, for all types of evaluation metrics, indicate that in the majority of the versions

CK plus LBS are better predictors than CK alone, while negative values indicate the opposite.

A zero net improvement means that both sets of independent variables were found better

than the other in an equal number of versions or that they are equal in all versions. For all

evaluation metrics except absolute error, the same is true for the average delta percentage,

which is computed on the average values over all versions of the corresponding project. For

absolute error, a negative value means that there is a reduction in the amount of error and

hence indicates an improvement while the opposite holds for positive values of absolute error.

The predictions using CK plus LBS metrics have outperformed those of CK alone in

most of the versions of the three projects, when considering both within and across version

prediction. For ArgoUML, the prediction on the same versions using CK and LBS together

has improved in at least 5 of the 6 versions considered, according to the different evaluation

metrics. For Eclipse the improvement observed in all versions is consistently reported by

all evaluation metrics. Figure 5.1 shows the average values of all versions of Eclipse for the

evaluation metrics. We observe an important improvement for all metrics except for accuracy

where the improvement is minor. The result of the evaluation metrics for Rhino shows that

there is an improvement in the majority of the versions considered (at least 6 out of 8). The

distributions of the evaluation metrics for all projects are shown in Figure 5.3.

When predicting on the next version, results depend on the evaluation metrics. For

ArgoUML, negative net improvement values are observed in three of the evaluation metrics

while the other three show that there is a net improvement in at least 3 out of the 5 versions

predicted. For Eclipse we observe a negative net improvement only for one of the evaluation

metrics and a positive net improvement for three of the evaluation metrics. Figure 5.2

contrasts the predictions of the two models for Eclipse. For Rhino we observe a negative net

improvement for two of the evaluation metrics and a positive net improvement for two other

evaluation metrics.

Overall, in both types of predictions, within and across versions, CK plus LBS are better

than CK alone in the majority of the versions. This result is confirmed by almost all average

delta percentage values shown next to each net improvement. The average delta percentage
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decreased only in 10 out of the 36 metrics computed for the three projects. Hence, we can

answer RQ2 affirmatively.

Table 5.7 Average values when using the CK metrics as independent variables.

Project Category Metric LRM RF SVM
ArgoUML Rank Popt 0.43 0.505 0.603

FPA 28.5 4.91 45.8
Error E 91.1 88.7 86.8

Classification A 0.923 0.925 0.927
F 0.0674 0.199 0.0812
MCC 0.0964 0.199 0.12

Eclipse Rank Popt 0.405 0.521 0.637
FPA 51.9 0.444 60.8

Error E 122 127 118
Classification A 0.98 0.98 0.981

F 0.0066 0.0985 0.0439
MCC 0.0167 0.139 0.104

Rhino Rank Popt 0.478 0.535 0.568
FPA 17.9 16.3 21.4

Error E 44.9 42.8 41.2
Classification A 0.695 0.71 0.717

F 0.544 0.538 0.579
MCC 0.3 0.336 0.375

5.2.3 RQ3: Which LBS Help More to Explain Faults?

Table 5.9 shows the ranked LBS according to their contribution for SVM. We also indicate

within brackets the median rank across versions. The following observations can be made

across the different projects: Synonym similar is in the top five most important LBS for all

projects. Inconsistent terms and overloaded identifiers are in the top three for two of the

Figure 5.1 Eclipse: Average of the evaluation metrics for same version prediction.
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Table 5.8 CK and CK + LBS prediction capability comparison using SVM.

Project Predi. Category Metric Imp. Dec. Equal Net Avg.
version imp. delta %

ArgoUML Same Error E 5 1 0 4 -7.495
Rank Popt 6 0 0 6 5.068

FPA 6 0 0 6 10.54
Classification A 5 1 0 4 0.5554

F 5 1 0 4 44.81
MCC 5 1 0 4 19.13

Next Error E 1 3 1 -2 1.883
Rank Popt 2 3 0 -1 -0.9093

FPA 4 1 0 3 12.57
Classification A 1 3 1 -2 -0.1643

F 3 0 2 3 272.4
MCC 4 0 1 4 285.7

Eclipse Same Error E 5 0 0 5 -9.369
Rank Popt 5 0 0 5 3.177

FPA 5 0 0 5 12.35
Classification A 5 0 0 5 0.1845

F 5 0 0 5 161.3
MCC 5 0 0 5 68.52

Next Error E 2 2 0 0 2.02
Rank Popt 1 3 0 -2 -3.377

FPA 2 1 1 1 0.8696
Classification A 2 2 0 0 -0.03875

F 4 0 0 4 212.4
MCC 3 1 0 2 157.1

Rhino Same Error E 6 1 1 5 -9.596
Rank Popt 6 2 0 4 3.144

FPA 7 0 1 7 4.04
Classification A 6 1 1 5 2.012

F 7 0 1 7 7.895
MCC 6 1 1 5 11.76

Next Error E 1 2 2 -1 2.769
Rank Popt 3 2 0 1 3.104

FPA 4 0 1 4 8.974
Classification A 1 2 2 -1 -2.361

F 2 2 1 0 -0.8509
MCC 2 2 1 0 -1.667
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Figure 5.2 Eclipse: Average of the evaluation metrics for next version prediction.
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projects. Inconsistent terms and synonym similar have a median rank at most 11. Finally,

whole part does not seem to be important for fault prediction.

We also observe that some LBS tend to have a specific contribution for particular projects.

For instance, extreme contraction is ranked first among all LBS for Eclipse, while misspelling

is ranked second for Rhino.

5.3 Discussions

PCA shows that the majority of the LBS (all but three) are major contributors in at

least one dimension for more than 50% of the analyzed versions. The strongest percentages

are obtained by inconsistent terms, overloaded identifiers, and useless types. The weakest

percentages across versions appear to be odd grammatical structure, misspelling, and synonym

similar.

We have analyzed three types of prediction models to identify the best model that works

with the CK metrics. Of the analyzed models SVM is found to be the best in the majority

of the cases (see Table 5.7). Hence, we have used this model to assess the contribution of

LBS to the CK metrics in predicting fault prone classes. The results shown in Table 5.8

indicate that adding LBS to CK improves the predicting capability of the models. The

improvement is observed on almost all types of evaluation metrics used in the three projects,

considering within and across version prediction. This result is also confirmed by the average

delta percentage. Predictions conducted on the same versions using LBS plus CK metrics

have shown improvement in more versions compared to predictions on the next version. For

example, in Eclipse LBS plus CK metrics improved the prediction in all versions (5 of 5),

while across versions the improvement is observed in at most half of the versions (2 of 4).

The difference can be observed by comparing Figures 5.1 and 5.2.

The results of RQ3 show that for fault prediction synonym similar is in the top five most

important LBS. Our findings are consistent with previous research on program identifiers

that suggest that identifiers using synonyms lack conciseness and consistency (Lawrie et al.,

2006a). Overall, synonym similar, inconsistent terms, and overloaded identifiers seem to be

in general the most important LBS for fault prediction. We also observe that other LBS are

important but specific to projects, e.g., extreme contraction for Eclipse and misspelling for

Rhino.

5.3.1 Threats to Validity

Conclusion validity: We do not perform any statistical test, thus threats to conclusion

validity are not applicable in this study.
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Table 5.9 Ranked LBS according to SVM.

ArgoUML Rhino Eclipse
Synonym Odd grammatical Extreme
similar (4) structure (6.5) contraction (3)
Inconsistent Misspelling (7.5) Overloaded
terms (6.5) identifiers (4)
Overloaded Inconsistent Identifier
identifiers (8.5) terms (10) construction (4)
Identifier Synonym Useless
construction (9.5) similar (11) types (7)
Odd grammatical Meaningless Synonym
Structure (10) terms (12) similar (8)
Misspelling (10.5) Identifier Odd grammatical

construction (12.5) structure (8)
Useless Extreme Meaningless
types (13) contraction (13) terms (10)
Extreme Overloaded Inconsistent
contraction (15.5) identifiers (14) terms (11)
Meaningless Useless misspelling (14)
terms (20) types (17.5)
Whole part (20) Whole part (20) Whole part (20)

Internal validity: To identify LBS, we have used a suite of tools that implement gen-

eral heuristics that can be configured to accommodate some variability. The three projects

considered in our study are developed in different environments and hence are influenced

by their respective environments. Using one general configuration for all the projects might

affect the results. To handle this threat, we manually explored their documentations, when

available, and configured the detectors accordingly. The prediction results also depend on

the used models and their configurations. We used default configurations or configurations

used in other studies. Further tuning of the parameters however could change the rankings

of the models. The best model from RQ2, SVM, was used with default parameters. Di Mar-

tino et al. (2011) suggest the use of genetic algorithms to select the parameters for further

improvement of the results.

Construct validity: Our study uses the CK metrics considered by Kpodjedo et al. (2011)

and others as a baseline to investigate the contribution of LBS in predicting fault proneness

of a class. In the literature, however, there are other metrics that are proposed to achieve

the same goal.

External validity: We consider only three Java projects which limits the generalizability

of the study. However, these projects have different domains and different sizes, which limit

this threat.

Reliability validity: We use open-source projects whose source code is available. We
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attempt to provide all necessary details to replicate the analysis.

5.4 Conclusion

In this study, we have shown that the identifier quality as measured by LBS capture addi-

tional information compared to structural measures such as the CK metric suite. In addition,

we have shown that in the majority of the cases using LBS with the structural metrics (CK)

improves fault prediction. To assess the improvement, we have used different evaluation met-

rics that address different aspects of the prediction; the improvement is consistent in almost

all types of evaluation metrics.

Among all LBS, the most important ones are overloaded identifiers and inconsistent terms.

In the majority of the projects, these are the major contributors of at least one retained

principal component; they are also the most important contributors for fault prediction.

Moreover, for fault prediction synonym similar is always among the top five most important

LBS. On the other hand, we believe that other LBS, not included in this list, should not be

deemed irrelevant, as they become important for specific projects, e.g., extreme contraction

and misspelling.
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CHAPTER 6

LINGUISTIC ANTIPATTERNS (LAS)

Highlight: In Chapters 4 and 5 we provide evidence on the relation between the

quality of the lexicon—as measured by HEHCC and LBS—and the quality of the

software. In this Chapter, we evaluate the quality of the lexicon in terms of its

consistency. We conjecture that the quality of identifiers alone may not be sufficient

to identify lexicon flaws and that the inconsistency among identifiers from different

sources (name, implementation, and documentation) can be particularly harmful for

developers as they may make wrong assumptions about the code behavior or spend

unnecessary time and effort to clarify it when understanding source code. Thus,

our objective is to define inconsistencies among identifiers from different sources—

naming, documentation, and implementation of an entity—that may possibly impair

program understanding.

There are many recognized bad practices in software development known as code smells

and AntiPatterns (APs) (Brown et al., 1998; Fowler, 1999). They concern poor design or

implementation solutions, as for example the Blob, also known as God class, which is a large

and complex class centralizing the behavior of a part of the project and using other classes

simply as data holders. Previous studies indicated that APs may affect software comprehen-

sibility (Abbes et al., 2011) and possibly increase change and fault-proneness (Khomh et al.,

2012, 2009). From a recent study by Yamashita et Moonen (2013) it is also known that the

majority of developers are concerned about code smells.

In this chapter we define of a new family of software antipatterns, named linguistic an-

tipatterns. Software antipatterns—as they are known so far—are opposite to design patterns

(Gamma et al., 1994), i.e., they identify “poor” solutions to recurring design problems. For

example, Brown’s 40 antipatterns describe the most common pitfalls in the software indus-

try (Brown et al., 1998). They are generally introduced by developers not having sufficient

knowledge and–or experience in solving a particular problem, or misusing good solutions,

i.e., design patterns. Linguistic antipatterns shift the perspective from source code structure

towards its consistency with the lexicon:

Linguistic Antipatterns (LAs) in software projects are recurring poor prac-

tices in the naming, documentation, and choice of identifiers in the implementa-
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tion of an entity, thus possibly impairing program understanding.

The presence of inconsistencies can be particularly harmful for developers that can make

wrong assumptions about the code behavior or spend unnecessary time and effort to clarify

it when understanding source code for their purposes. Therefore, highlighting their presence

is essential for producing code easy to understand. In other words, our hypothesis is that

the quality of the lexicon depends not only on the quality of individual identifiers but also

on the consistency among identifiers from different sources (name, implementation, and doc-

umentation). Thus, identifying and cataloguing practices that result in inconsistent lexicon

will increase developer awareness and thus contributes to the improvement of the lexicon.

An example of LA, which we have named “Not answered question”, is the public method

isClassPathCorrect of class ProblemReporter found in the Eclipse 1 project. One would

expect that such a method returns a Boolean; instead, the method does not return any value,

it sets an attribute and then calls another method to perform the task. It is left to the reader

to search for a means to obtain the result. Another example of LA—of type “Method name

and return type are opposite”, found in the BWAPI 2 project—is method player_enemy_impl

of class Player_Ally, which returns a Player_Ally object. On the one hand, the class name

Player_Ally suggests that such a class models a player when she is in the ally state, hence

implementing part of a state design pattern (Gamma et al., 1994). On the other hand, an

outsider may wonder why a method player_enemy_impl returns a Player_Ally and not for

example Player_Enemy. In the end, it turns out that the class Player_Ally models a player

in both “enemy” and “ally” states, i.e., the state design pattern is not used.

6.1 Catalog

We defined LAs and group them into categories based on a close inspection of source code

examples. We analyzed source code from three open-source Java projects—ArgoUML, Co-

coon, and Eclipse. We randomly sampled several files and analyzed the source code looking

for examples of inconsistencies of lexicon among different sources of identifiers—i.e., identifiers

from the name, documentation, and implementation of an entity. For each file, we analyzed

the declared entities (methods and attributes) by asking ourselves questions such as “Is the

name of the method consistent with its return type?”, “Is the attribute comment consistent

with its name?”. The set of inconsistencies examples that we found were then organized into

an initial set of LAs. We iterated several times over the sampling and coding process and

refine the questions based on the newly discovered examples. For example, “What is an in-

consistent name for a boolean return type?”, “Is void a consistent type for method isValid?”,

1. http://www.eclipse.org

2. https://code.google.com/p/bwapi/

http://www.eclipse.org
https://code.google.com/p/bwapi/
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“What other types are inconsistent with method isValid?”, etc. Over the iterations LAs were

further refined, compared, and grouped into categories; categories are modified according to

the new examples of inconsistencies—e.g., some categories are combined, refined, or split

to account for the newly defined LAs. As the goal is to capture as many different lexicon

inconsistencies as possible, the sampling was guided by the theory—i.e., theoretical sam-

pling (Strauss, 1987)—and thus not representative of the entire population of source code

entities. We stopped iterating over the sampling and coding process when new examples

of inconsistencies did not anymore modify the defined LAs and their categories. However,

during this process we did not follow a thorough grounded-theory approach (Strauss, 1987;

Glaser, 1992)—e.g., we did not measure the inter-agreement at each iteration—as the process

was meant to identify possible inconsistencies for which we would gather developers’ percep-

tions. Thus, the agreement between the authors of this paper was a guidance rather than a

requirement.

The above process resulted in 17 types of LAs, grouped into six categories, three regarding

behavior—i.e., methods—and three regarding state—i.e., attributes. For methods, LAs are

categorized into methods that (A) “do more than they say”, (B) “say more than they do”,

and (C) “do the opposite than they say”. Similarly, the categories for attributes are (D) “the

name says more than the entity contains”, (E) “the name says less than the entity contains”,

and (F) “the name says the opposite than the entity contains”.

The rest of this section details each LA by providing the rationale behind it, an example

coming from real software projects, its consequences, and an example solution.
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A.1 - “Get” - more than an accessorA.1 - “Get” - more than an accessor

A getter that performs actions other than returning the corresponding attribute without

documenting it.

Rationale In Java, accessor methods, also called getters, provide a way to access

class attributes. As such, it is not common that getters perform

actions other than returning the corresponding attribute except for

common practices—e.g., when implementing a lazy initialization

(Gamma et al., 1994). Any other action should be documented,

possibly naming the method differently than getSomething.

Example Method getImageData which, no matter the attribute value, every

time returns a new object (Figure 6.1).

Consequences The usage of such getters would cause an unexpected allocation

of new objects (which normally does not happen with getters), or

returning a null value when this should not be the case, i.e., the

attribute is not null.

Example solution When additional actions in accessor methods are necessary they need

to be documented except for common practices—e.g., when imple-

menting a lazy initialization. A possible solution for the example

shown in Figure 6.1 is to rename the method to createImageData

and to comment the unusual behavior: “A new ImageData object is

created and assigned to the attribute every time the method is called”.
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65     
66     public ImageData getImageData() {
67 final Point size = this.getSize();
68 final RGB black = new RGB(0, 0, 0);
69 final RGB[] rgbs = new RGB[256];
70 rgbs[0] = black; // transparency
71 rgbs[1] = black; // black
72 final PaletteData dataPalette = 
73      new PaletteData(rgbs);
74 this.imageData = 
75      new ImageData(size.x, size.y, 8, dataPalette);
76 this.imageData.transparentPixel = 0;
77 this.drawCompositeImage(size.x, size.y);
78 for (int i = 0; i < rgbs.length; i++) {
79     if (rgbs[i] == null) {
80 rgbs[i] = black;
81     }
82 }
83 return this.imageData;
84     }
85
86     private void drawCompositeImage(final int x, final int y) {
87 // TODO Auto-generated method stub
88
89     }
90
91 }
92

Page 2

Figure 6.1 “Get” - more than an accessor (A.1).

A.2 - “Is” returns more than a BooleanA.2 - “Is” returns more than a Boolean

Method name is a predicate, whereas the return type is not Boolean but a more complex

type allowing a wider range of values.

Rationale When a method name starts with the term “is” one would expect

Boolean as return type, thus having two possible values for the predi-

cate, i.e., true and false. Thus, having an “is” method that does not

return Boolean, but returns more information is counterintuitive. In

such cases, the method should be renamed or, at least, details about

the return values should be included in the method comments.

Example Method isValid with return type int (see Figure 6.2).

Consequences Some of problems related to such LA will be detected at compile time

(or even by the IDE), however the misleading naming can still cause

misunderstanding on the maintainers’ side. However, in programs

written in C++, no compilation problem will occur when the return

type is int.

Example solution When the return type cannot be changed to Boolean, we recommend

to rename the method and–or document the return values. An ex-

ample of documentation for the method shown in Figure 6.2, is “The

method returns −1 for ‘invalid’, 1 for ‘valid’, and 0 for ‘don’t know’ ”.
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DelayedValidity.java

2  * Licensed to the Apache Software Foundation (ASF) under one or more
17 package org.apache.cocoon.components.source.impl.validity;
18
19 /**
20  * Delays validity check for a specified interval.
21  * 
22  * <p>
23  * This is wrapper validity which can be used to reduce count of filesystem (or
24  * network) accesses just to check the source validity.
25  * 
26  * @since 2.1.8
27  * @version $Id: DelayedValidity.java 587750 2007-10-24 02:35:22Z vgritsenko $
28  */
29 public class DelayedValidity implements SourceValidity {
30
31     public int isValid() {
32 final long currentTime = System.currentTimeMillis();
33 if (currentTime <= this.expires) {
34     // The delay has not passed yet - 
35     // assuming source is valid.
36     return SourceValidity.VALID;
37 }
38 // The delay has passed, prepare for the next interval.
39 this.expires = currentTime + this.delay;
40 return this.delegate.isValid();
41     }
42
43     private final long delay;
44     private long expires;
45
46     private final SourceValidity delegate;
47

Page 1

Figure 6.2 “Is” returns more than a Boolean (A.2).

A.3 - “Set” method returnsA.3 - “Set” method returns

A set method having a return type different than void and not documenting the return

type/values with an appropriate comment.

Rationale Modifier methods, also called setters, are methods that allow as-

signing a value to a class attribute (the attribute being normally

protected or private, hence not directly accessible from outside). By

convention, setters do not return anything. More generally, the same

statement is valid for methods whose name starts with “set”. Thus, a

set method having a return type different than void should document

the return type/values to avoid any misuse.

Example Method setBreadth with return type Dimension in Figure 6.3 shows

one such case where the method always creates a new object and

returns it. A proper documentation would include details about the

return values.

Consequences One could use the setter method without storing/checking its

returned value, hence useful information—e.g., related to erroneous

or unexpected behavior—is not captured.

Example solution The example shown in Figure 6.3 can be improved by documenting

that “The method creates a Dimension and set its breadth to the value

of source.” and by renaming the method to createDimensionWithBreadth.
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Orientation.java

203     public Dimension setLength(final Dimension target, final Dimension source) {
204 if (this.orientation == Orientation.VERTICAL) {
205     return new Dimension((int) target.getWidth(),
206     (int) source.getHeight());
207 } else {
208     return new Dimension((int) source.getWidth(),
209     (int) target.getHeight());
210 }
211     }
212
213     public Dimension setBreadth(final Dimension target, final int source) {
214 if (this.orientation == Orientation.VERTICAL) {
215     return new Dimension(source, (int) target.getHeight());
216 } else {
217     return new Dimension((int) target.getWidth(), source);
218 }
219     }
220
221     public Dimension setBreadth(final Dimension target, final Dimension source) {
222 if (this.orientation == Orientation.VERTICAL) {
223     return new Dimension((int) source.getWidth(),
224     (int) target.getHeight());
225 } else {
226     return new Dimension((int) target.getWidth(),
227     (int) source.getHeight());
228 }
229     }
230
231     public boolean isVertical() {
232 return this.orientation == Orientation.VERTICAL;
233     }
234

Page 7

Figure 6.3 “Set” method returns (A.3).

A.4 - Expecting but not getting a single instanceA.4 - Expecting but not getting a single instance

Method name indicates that a single object is returned but the return type is a collection.

Rationale When a method name indicates that a single object is returned,

one would expect that a single object is also returned. If, instead,

the return type is a collection, the method shall be renamed or

appropriate documentation is needed.

Example Method getExpansion returning List (see Figure 6.4)—defined in

class DrillFrame—suggests that an object Expansion will be returned

whereas a collection is.

Consequences Although this would unlikely cause faults at run-time, it might cause

false expectancies to the developers. When reading getExpansion,

one would expect to handle a simple object, whereas it is necessary

to deal with multiple objects, which requires different source code to

analyze the result, e.g., iterators.

Example solution A possible solution for the method shown in Figure 6.4 would be to

rename it to getTreeNodes and rename the attribute accordingly.

toto.java

72     
73     /**
74      * Returns the expansion state for a tree.
75      * 
76      * @return the expansion state for a tree
77      */
78     public List getExpansion() {
79 return this.fExpansion;
80     }
81
83      * Returns the property name.
87     public Object getPropertyName() {
88 return this.fPropertyName;
89     }
90 }
91

Page 2

Figure 6.4 Expecting but not getting a single instance (A.4).



65

B.1 - Not implemented conditionB.1 - Not implemented condition

The method’ comments suggest a conditional behavior that is not implemented in the code.

When the implementation is default this should be documented.

Rationale A leading comment summarizes the behaviour of a method at a

higher level of abstraction. It allows developers to grasp the intent

of the method and the main lines of the implementation without the

need to go over all statements in the method’s body. Thus, when a

condition is expressed in a method’s comment one assumes that the

condition is implemented.

Example Figure 6.5 shows a method defined in class FileEditionEditorInput

that based on the comment “returns an empty array if this object has

no children” whereas the implementation always returns the same

value.

Consequences This LA can have two main consequences. First, clients of the

corresponding methods assume the documented behavior resulting

in wrong system behavior. Second, during testing—especially black

box testing—the tester would invest time and effort to gener-

ate test cases for the different conditions, while one test case will

cover all method statements (or, in general, less test cases are needed).

Example solution The method shown in Figure 6.5 could document the default behavior

if it is intentional: “This method provides a default behavior by always

returning an empty array.”

FileEditionEditorInput.java

58     
59
60     /**
61      * Returns the children of this object. When this object is 
62      * displayed in a tree, the returned objects will be this 
63      * element's children. Returns an empty array if this object 
64      * has no children.
65      * 
66      * @param object The object to get the children for.
67      */
68     public Object[] getChildren(final Object o) {
69 return new Object[0];
70     }
71
73      * Returns an open input stream on the contents of this file. 

The client is
80     public InputStream getContents() throws CoreException {
81 return this.file.fetchContent(null);
82     }
83
85      * Returns the content type of the input. For instance, if the 

input wraps
90     public String getContentType() {
91 final String name = this.file.getName();
92 return name.substring(name.lastIndexOf('.') + 1);
93     }
94
96      * Returns the fully qualified path name of the input.
98     public String getFullPath() {
99 // use path to make sure slashes are correct
100 return new Path(this.file.getProjectName()).append(
101 this.file.getProjectRelativePath()).toString();
102     }
103
105      * Returns the image descriptor for this input.
109     public ImageDescriptor getImageDescriptor() {
110 final IWorkbenchAdapter fileAdapter = (IWorkbenchAdapter) 

this.file
111 .getAdapter(IWorkbenchAdapter.class);
112 return fileAdapter == null ? null : fileAdapter
113 .getImageDescriptor(this.file);
114     }
115
117      * @see IWorkbenchAdapter#getImageDescriptor

Page 2

Figure 6.5 Not implemented condition (B.1).
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B.2 - Validation method does not confirmB.2 - Validation method does not confirm

A validation method that neither provides a return value informing whether the validation

was successful, nor it documents how to proceed to understand.

Rationale A validation method—i.e., a method whose name starts with, for

example, “validate”, “check”, or “ensure”—is a method performing

a check for validity that is usually required as a precondition for

other operations. As such, validation methods are expected to inform

the user whether the check is successful or not either by returning

true/false or by throwing an exception is case the validation fails.

Example Figure 6.6 shows method checkCollision defined in class UMLCom-

boBoxEntry that neither returns Boolean nor throws an exception.

Consequences One may not know how to handle the outcome of the validation.

Very likely, such an outcome is stored somewhere—e.g., an instance

variable—however this is not clear from the method specification/-

documentation.

Example solution Validation methods must inform the user of the result of the val-

idation by means of return value, exceptions, warnings, or errors.

A solution for the example in Figure 6.6 would be to return the

variable collision. In addition, the actions in case of collision could

be extracted in a separate method named resolveCollision.

B2.java

71
72     public void updateName() {
73 if (this._element != null) {
74     final MNamespace ns = this._element.getNamespace();
75     this._shortName = 

this._profile.formatElement(this._element, ns);
76 }
77     }
78
79     public void checkCollision(final String before, 
80     final String after) {
81 final boolean collision = before != null
82 && before.equals(this._shortName) || after != null
83 && after.equals(this._shortName);
84 if (collision) {
85     if (this._longName == null) {
86 this._longName = this.getLongName();
87     }
88     this._displayName = this._longName;
89 }
90     }
91
92     public String getShortName() {
93 return this._shortName;
94     }
95
96     public String getLongName() {
97 if (this._longName == null) {
98     if (this._element != null) {
99 this._longName = 

this._profile.formatElement(this._element,
100 null);
101     } else {
102 this._longName = "void";
103     }
104 }
105 return this._longName;
106     }
107
108     // Refactoring: static to denote that it doesn't use any class 

members.
109     // Needs-more-work:
110     // Idea to move this to MMUtil together with the same function 

from
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Figure 6.6 Validation method does not confirm (B.2).
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B.3 - “Get” method does not returnB.3 - “Get” method does not return

The name suggests that the method returns something (e.g., name starts with “get” or

“return”) but the return type is void. The documentation should explain where the resulting

data is stored and how to obtain it.

Rationale A method whose name starts with “get” or “return” suggests that an

object will be returned as a result of the method execution. Thus,

having such methods returning void without documenting where the

result is stored is counterintuitive.

Example The example in Figure 6.7 shows the source code of a method named

getMethodBodies, defined in class Compiler, which suggests method

bodies as result, however nothing is returned.

Consequences One would expect to be able to assign the method return value to

a variable. However, since this is not possible, one has to further

understand the code to determine where the retrieved data is stored

and how to obtain it.

Example solution The example shown in Figure 6.7 could be resolved by renaming

the method to fillMethodBodies or by adding a documentation:

“The method parses the method bodies and stores the result in the

parameter unit”.
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B3.java

284
285     /**
286      * Answer an array of descriptions for the configurable options. 

The
287      * descriptions may be changed and passed back to a different 

compiler.
288      * 
289      * @return ConfigurableOption[] - array of configurable options
290      */
291     public static ConfigurableOption[] getDefaultOptions(final 

Locale locale) {
292 return new CompilerOptions().getConfigurableOptions(locale);
293     }
294
295     protected void getMethodBodies(
296     final CompilationUnitDeclaration unit,
297     final int place) {
298 // fill the methods bodies in order for the code 
299 // to be generated
300 if (unit.ignoreMethodBodies) {
301     unit.ignoreFurtherInvestigation = true;
302     return; // if initial diet parse did not work, 
303     // no need to dig into method bodies.
304 }
305 if (place < this.parseThreshold) {
306     return; // work already done ...
307 }
308 // real parse of the method....
309 this.parser.scanner
310 .setSourceBuffer(
311 unit.compilationResult.compilationUnit
312 .getContents());
313 if (unit.types != null) {
314     for (int i = unit.types.length; --i >= 0;) {
315 unit.types[i].parseMethod(this.parser, unit);
316     }
317 }
318     }
319
320     /*
321      * Compiler crash recovery in case of unexpected runtime 

exceptions
322      */
323     protected void handleInternalException(final Throwable 

internalException,
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Figure 6.7 “Get” method does not return (B.3).

B.4 - Not answered questionB.4 - Not answered question

The method name is in the form of predicate, whereas nothing is returned.

Rationale A method whose name is a predicate (e.g., starts with “is”, “has”) is

expected to have Boolean as return type where the returned value

indicates an assertion or a denial.

Example Figure 6.8 shows an example of method isValid, declared in class

ISelectionValidator, where the name suggests a Boolean value as

result but nothing is returned.

Consequences Consequences are similar to those of “Get” method does not return.

In this case, the developer would even expect to use the method

within a conditional control structure, which is however not possible.

Example solution The example shown in Figure 6.8 can be resolved by documenting

that “the result of the validation and the validation message are stored

in res”, by changing the return type to Boolean, and by returning

true when the selection is valid and false otherwise.
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B4.java

576     /**
577      * Creates and returns a dialog to choose an existing workspace 

file.
578      */
579     protected ElementTreeSelectionDialog 

createWorkspaceFileSelectionDialog(
580     final String title, final String message) {
581 final int labelFlags = JavaElementLabelProvider.SHOW_BASICS
582 | JavaElementLabelProvider.SHOW_OVERLAY_ICONS
583 | JavaElementLabelProvider.SHOW_SMALL_ICONS;
584 final ITreeContentProvider contentProvider = new 

JavaElementContentProvider(
585 true, false, false);
586 final ILabelProvider labelProvider = new 

JavaElementLabelProvider(
587 labelFlags);
588 final ElementTreeSelectionDialog dialog = new 

ElementTreeSelectionDialog(
589 getShell(), labelProvider, contentProvider, false, 

true);
590 dialog.setValidator(new ISelectionValidator() {
591     
592     public void isValid(final Object[] selection, 
593     final StatusInfo res) {
594 // only single selection
595 if (selection.length == 1 
596 && selection[0] instanceof IFile) {
597     res.setOK();
598 } else {
599     res.setError(""); //$NON-NLS-1$
600 }
601     }
602     
603 });
604 dialog.addFilter(new EmptyInnerPackageFilter());
605 dialog.setTitle(title);
606 dialog.setMessage(message);
607 dialog.setStatusLineAboveButtons(true);
608

dialog.setInput(JavaCore.create(JavaPlugin.getDefault().getWorkspac
e()

609 .getRoot()));
610 return dialog;
611     }
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Figure 6.8 Not answered question (B.4).

B.5 - Transform method does not returnB.5 - Transform method does not return

The method name suggests the transformation of an object, however there is no return value

and it is not clear from the documentation where the result is stored.

Rationale A method whose name suggests the transformation of an object is

expected to return the result or, if this is not the case, document

where the results is stored—e.g., if one of the parameter stores the

result then this must be clear from its name/documentation.

Example An example of this LA is shown in Figure 6.9—method javaToNative

defined in class LocalSelectionTransfer—where the name suggests

a transformation of an object but it is unclear where the result is

stored and how to retrieve it.

Consequences Similar to “Get” method does not return. Specifically, here one

would expect to be able to assign the result of the method to a

variable suggested by the method name (Native in our example, i.e., a

platform-specific representation).

Example solution The example shown in Figure 6.9 could document that “The re-

sult of the conversion is stored in transferData” or simply inherit

the documentation of the overridden method—as in this case it exists.
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LocalSelectionTransfer.java

40     }
41
42     /**
43      * The used type id to identify this transfer.
44      */
45     protected int[] getTypeIds() {
46 return new int[] { LocalSelectionTransfer.TYPEID };
47     }
48
49     protected String[] getTypeNames() {
50 return new String[] { LocalSelectionTransfer.TYPE_NAME };
51     }
52
53     public void javaToNative(final Object object,
54     final TransferData transferData) {
55 final byte[] check = 
56 LocalSelectionTransfer.TYPE_NAME.getBytes();
57 super.javaToNative(check, transferData);
58     }
59
60     public Object nativeToJava(final TransferData transferData) {
61 final Object result = super.nativeToJava(transferData);
62 if (!(result instanceof byte[])
63 || !LocalSelectionTransfer.TYPE_NAME.equals(new 

String(
64 (byte[]) result))) {
65     JavaPlugin.logErrorMessage(JavaUIMessages
66     .getString("LocalSelectionTransfer.errorMessage")

); //$NON-NLS-1$
67 }
68 return this.fSelection;
69     }
70
71     /**
72      * Sets the transfer data for local use.
73      */
74     public void setSelection(final ISelection s) {
75 this.fSelection = s;
76     }
77 }
78
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Figure 6.9 Transform method does not return (B.5).

B.6 - Expecting but not getting a collectionB.6 - Expecting but not getting a collection

The method name suggests that a collection should be returned, but a single object or

nothing is returned.

Rationale A method whose name suggests that a collection is returned is

expected to also have a collection as return type. If the method

returns a single object then it must be clear form the documentation

what is the implicit aggregation function and the method must be

considered for renaming.

Example In the example shown in Figure 6.10, the name of the method,

defined in class SAXParserBase, suggests that some statistics will be

returned, while the method only returns a Boolean value.

Consequences A developer would likely expect that the method will return a set of

values (e.g., a time series of temperature, or an array of monitoring

data), suggesting that appropriate patterns, such as iterators, are

needed to navigate the data structure. Instead, in some cases, the

method may return only one of these values, or, in other cases, like

the one in Figure 6.10, the returned value is completely inconsistent

with the method name.

Example solution A solution for the example shown in Figure 6.10 would be to rename

the method to isStatisticsEnabled as well as the corresponding

attribute.

B6.java

70
71     protected boolean _startElement = false;
72
73     // /////////////////////////////////////////////////////////////

/
74     // accessors
75
76     public void setDebug(final boolean debug) {
77 SAXParserBase._dbg = debug;
78     }
79
80     public void setStats(final boolean stats) {
81 SAXParserBase._stats = stats;
82     }
83
84     public boolean getStats() {
85 return SAXParserBase._stats;
86     }
87
88     public long getParseTime() {
89 return SAXParserBase._parseTime;
90     }
91
92     // /////////////////////////////////////////////////////////////

/
93     // main parsing method
94
95     public void parse(final URL url) throws Exception {
96 this.parse(url.openStream());
97     }
98
99     public void parse(final InputStream is) throws Exception {
100
101 long start, end;
102
103 final SAXParserFactory factory = 

SAXParserFactory.newInstance();
104 factory.setNamespaceAware(false);
105 factory.setValidating(false);
106 try {
107     final SAXParser parser = factory.newSAXParser();
108     final InputSource input = new InputSource(is);
109     

input.setSystemId(this.getJarResource("org.argouml.kernel.Project"))
;
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Figure 6.10 Expecting but not getting a collection (B.6).
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C.1 - Method name and return type are oppositeC.1 - Method name and return type are opposite

The intent of the method suggested by its name is in contradiction with what it returns.

Rationale The name of a method indicates the action that will be performed

while its return type specifies the type of the result from this action.

As such, the return type mush be consistent, i.e., not in contradiction,

with the method’s name.

Example The method shown in Figure 6.11, defined in class ControlEn-

ableState, is an example of this LA, where the name and return

type are inconsistent because the method disable returns an “en-

able” state. With the available documentation, the reader will infer

that the return type is a control state that can be enabled or disabled.

Consequences The developers can make wrong assumptions on the returned value

and this might not be discovered at compile time. In some cases—

e.g., when the method returns a Boolean—the developer could negate

(or not) the value where it should not be negated (or it should be).

Example solution To resolve the example shown in Figure 6.11 the class ControlEn-

ableState could be renamed to ControlState to handle the case

where the state is enabled but also where the state is disabled.

Thus, the inconsistency with method disable is resolved as it will be

returning a ControlState.

C1.java

44     }
45     /**
46      * Creates a new object and saves in it the current enable/

disable
47      * state of the given control and its descendents; the controls 
48      * that are saved are also disabled.
49      *
50      * @param w the control
51      */
52     protected ControlEnableState(Control w) {
53 this(w, null);
54     }
55     /**
56      * Creates a new object and saves in it the current enable/

disable
57      * state of the given control and its descendents except for the 
58      * given list of exception cases; the controls that are saved
59      * are also disabled.
60      *
61      * @param w the control
62      * @param exceptions the list of controls to not disable
63      *  (element type: <code>Control</code>), or <code>null</code> 

if none
64      */
65     protected ControlEnableState(Control w, List exceptions) {
66 super();
67 states = new ArrayList();
68 this.exceptions = exceptions;
69 readStateForAndDisable(w);
70
71     }
72     
73     /**
74      * Saves the current enable/disable state of the given control
75      * and its descendents in the returned object; the controls
76      * are all disabled.
77      *
78      * @param w the control
79      * @return an object capturing the enable/disable state
80      */
81     public static ControlEnableState disable(Control w) {
82 return new ControlEnableState(w);
83     }
84
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Figure 6.11 Method name and return type are opposite (C.1).
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C.2 - Method signature and comment are oppositeC.2 - Method signature and comment are opposite

The documentation of a method is in contradiction with its declaration.

Rationale The leading comment of a method specifies the method’s intent at

a higher level of abstraction and as such it must be consistent with,

i.e., not contradicts, its actual implementation.

Example Figure 6.12 shows method isNavigateForwardEnabled where the

name of the method is in contradiction with its comment document-

ing “a back navigation”, as “forward” and “back” are antonyms.

Consequences Consequences are similar to those of the Method name and return

type are opposite, and can be even more misleading because the

developer is unsure whether to trust the comment or the method’s

signature. Either the one or the other is outdated or inconsistent,

and has to be updated.

Example solution The inconsistency in the example shown in Figure 6.12 would

be resolved by correcting the comment to document “a forward

navigation” thus being consistent with the implementation.
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C2.java

228      */
229     public boolean isNavigateBackEnabled() {
230 boolean enabled = false;
231 if (this._isBackEnabled == 1) {
232     return true;
233 } else {
234     if (this._isBackEnabled != 0) {
235 enabled = this.navigateBack(false) != null;
236     }
237 }
238 return enabled;
239     }
240
241     /**
242      * Returns true if this listener has a target for a 
243      * back navigation. Only one listener needs to return 
244      * true for the back button to be enabled.
245      */
246     public boolean isNavigateForwardEnabled() {
247 boolean enabled = false;
248 if (this._isForwardEnabled == 1) {
249     enabled = true;
250 } else {
251     if (this._isForwardEnabled != 0) {
252 enabled = 
253     this.navigateForward(false) != null;
254     }
255 }
256 return enabled;
257     }
258
259     
260 } /* end class NavigationHistory */
261
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Figure 6.12 Method signature and comment are opposite (C.2).

D.1 - Says one but contains manyD.1 - Says one but contains many

An attribute name suggests a single instance, while its type suggests that the attribute

stores a collection of objects.

Rationale The name of an attribute indicates what is the object(s) that it

contains while the type of an attribute indicates the type of the

contained object(s). Thus, there must be a consistency between the

name and type, i.e., when the name suggests a single instance the

type must also do.

Example In the example shown in Figure 6.13, attribute target of type Vector,

it is unclear whether a change affects one or multiple instances in the

collection.

Consequences Lack of understanding of the class state/associations. When such

attribute changes, one would not know whether the change impacts

a one or multiple objects.

Example solution The inconsistency in the example shown in Figure 6.13 can be re-

solved by renaming the attribute to targetCritics or simply critics.
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D1.java

442 this.insertUpdate(e);
443     }
444
445     public void changedUpdate(final DocumentEvent e) {
446 System.out.println(this.getClass().getName() + " changed");
447 // Apparently, this method is never called.
448     }
449
450     public void itemStateChanged(final ItemEvent e) {
451 final Object src = e.getSource();
452 if (src == this._priority) {
453     // System.out.println("class keywords now is " +
454     // _keywordsField.getSelectedItem());
455     this.setTargetPriority();
456 } else if (src == this._useClar) {
457     // System.out.println("class MVisibilityKind now is " +
458     // _visField.getSelectedItem());
459     this.setTargetUseClarifiers();
460 } else {
461     System.out.println("unknown itemStateChanged src: " + 

src);
462 }
463     }
464
465 } /* end class CriticBrowserDialog */
466
467 class TableModelCritics extends AbstractTableModel implements
468 VetoableChangeListener, DelayedVChangeListener {
469     @SuppressWarnings("rawtypes")
470     // //////////////
471     // instance varables
472     
473     Vector _target;
474
475     // //////////////
476     // constructor
477     public TableModelCritics() {
478     }
479
480     // //////////////
481     // accessors
482     public void setTarget(final Vector critics) {
483 this._target = critics;
484 // fireTableStructureChanged();
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Figure 6.13 Says one but contains many (D.1).

D.2 - Name suggests Boolean but type does notD.2 - Name suggests Boolean but type does not

An attribute name suggests that its value is true or false, while its declaring type is not

Boolean and the declared type and values are not documented.

Rationale The name of an attribute and its type must be consistent in a way

that when the name suggests that a Boolean value is contained then

the declared type must be indeed Boolean.

Example Figure 6.14 shows one such case defined in class ExceptionHan-

dlingFlowContext. The attribute name—isReached—suggests that

the value will be true if something is reached, false otherwise.

However, the declaring type is not Boolean.

Consequences The developer would expect to be able to test the attribute in a

control flow statement condition. However, this is not the case,

especially in cases like the one in Figure 6.14, for which the returned

type is an array, therefore it is not clear how to handle this attribute.

Example solution To resolve the inconsistency in the example shown in Figure 6.14 the

type of the array can be changed to boolean[] or a comment should

be added to documment how the values are treated, e.g., “0 indicates

‘false’, every other value is treated as ‘true’.

D2.java

1 package org.eclipse.jdt.internal.compiler.flow;
2
3 /*
4  * (c) Copyright IBM Corp. 2000, 2001.
5  * All Rights Reserved.
6  */
7
8 /**
9  * Reflects the context of code analysis, keeping track of enclosing 
try

10  * statements, exception handlers, etc...
11  */
12 public class ExceptionHandlingFlowContext extends FlowContext {
13     ReferenceBinding[] handledExceptions;
14
15     public final static int BitCacheSize = 32; // 32 bits per int
16     
17     int[] isReached;
18     
19     int[] isNeeded;
20     UnconditionalFlowInfo[] initsOnExceptions;
21     ObjectCache indexes = new ObjectCache();
22     boolean isMethodContext;
23
24     public ExceptionHandlingFlowContext(final FlowContext parent,
25     final AstNode associatedNode,
26     final ReferenceBinding[] handledExceptions, final 

BlockScope scope,
27     final UnconditionalFlowInfo flowInfo) {
28
29 super(parent, associatedNode);
30 this.isMethodContext = scope == scope.methodScope();
31 /*
32  * // for a method, append the unchecked exceptions to the 

handled
33  * exceptions collection
34  * 
35  * if (scope.methodScope() == scope) { int length; 

System.arraycopy(
36  * handledExceptions, 0, (handledExceptions = new
37  * ReferenceBinding[(length = handledExceptions.length) + 

2]), 0,
38  * length); handledExceptions[length] =
39  * scope.getJavaLangRuntimeException(); 

handledExceptions[length + 1] =
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Figure 6.14 Name suggests Boolean but type does not (D.2).
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E.1 - Says many but contains oneE.1 - Says many but contains one

Attribute name suggests multiple objects, but its type suggests a single one.

Rationale The name and type of an attribute must be consistent in a way that

when the name suggests multiple objects the type must also do.

If this is not the case the documentation mush state the rationale

behind such inconsistency or the attribute must be renamed to

include the implicit aggregation function.

Example In the example shown in Figure 6.15, the attribute name, defined in

class SAXParserBase, suggests that it contains statistics whereas its

type is Boolean.

Consequences Lack of understanding of the impact of attribute changes (see also

Says one but contains many).

Example solution A solution for the example shown in Figure 6.15 would be to rename

the attribute to statisticsEnabled.

B6.java

31 import javax.xml.parsers.SAXParserFactory;
32
33 import org.xml.sax.AttributeList;
34 import org.xml.sax.HandlerBase;
35 import org.xml.sax.InputSource;
36 import org.xml.sax.SAXException;
37
38 /**
39  * @author Jim Holt
40  */
41
42 public abstract class SAXParserBase extends HandlerBase {
43
44     // /////////////////////////////////////////////////////////////

/
45     // constants
46
47     protected static final String _returnString = new String("\n      

");
48
49     // /////////////////////////////////////////////////////////////

/
50     // constructors
51
52     public SAXParserBase() {
53     }
54
55     // /////////////////////////////////////////////////////////////

/
56     // static variables
57
58     protected static boolean _dbg = false;
59     protected static boolean _verbose = false;
60
61     private static XMLElement _elements[] = new XMLElement[100];
62     private static int _nElements = 0;
63     private static XMLElement _freeElements[] = new XMLElement[100];
64     private static int _nFreeElements = 0;
65     
66     private static boolean _stats = true;
67     
68     private static long _parseTime = 0;
69
70     // /////////////////////////////////////////////////////////////

/
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Figure 6.15 Says many but contains one (E.1).
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F.1 - Attribute name and type are oppositeF.1 - Attribute name and type are opposite

The name of an attribute is in contradiction with its type as they contain antonyms.

Rationale The name and declaring type of an attribute are expected to be

consistent with each other and thus one must not contradict the other.

Example The example of Figure 6.16 shows an attribute of class ActionNav-

igability. The contradiction comes form the use of the antonyms

“start” and “end”, one being part of the type of the attribute, the

other being part of its name.

Consequences This kind of misleading attribute naming can induce wrong assump-

tions. For example, whether a Boolean attribute contains information

that can be used directly in a control flow statement condition, or

whether it has to be negated. Similarly, prefixes/suffixes such as

“start” and “end” could confuse the developer about the direction a

data structure should be traversed.

Example solution One way to resolve to inconsistency in the example shown in Figure

6.16 would be to rename class MAssociationEnd to MAssociationEx-

tremity. Thus, an object of type MAssociationExtremity called

start would mean that the object is the start of the association and

will not cause a confusion.

F.java

1 /* (c) Copyright 2013 and following years, Venera Arnaoudova,
22
23 public class F {
24
25     // Example F1: Attribute name and type use antonyms, i.e., words 

with
26     // opposite meaning:
27     MAssociationEnd start2;
28
29     MAssociationEnd start = null;
30
31     // F2: Attribute comments and signature use antonyms, i.e., words 

with
32     // opposite meaning:
33     
34     /**
35      * Configuration default include pattern, ie .*\/@href|.*\/

@action|frame/@src
36      */
37     public final static String INCLUDE_NAME_DEFAULT = "";
38
39 }
40
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Figure 6.16 Attribute name and type are opposite (F.1).
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F.2 - Attribute signature and comment are oppositeF.2 - Attribute signature and comment are opposite

Attribute declaration is in contradiction with its documentation.

Rationale The comment of an attribute clarifies its intent and as such there must

be no contradiction between the attribute’s comment and declaration.

Example The example in Figure 6.17 shows an attribute named IN-

CLUDE_NAME_DEFAULT, defined in class EncodeURLTransformer.

However, its comment says “Configuration default exclude pat-

tern”. Whether the pattern is included or excluded is therefore

unclear from the comment and name.

Consequences A first consequence may be increased comprehension effort as without

a deep analysis of the source code, the developer might not clearly

understand the role of the attribute. As another risk may be that

one simply assumes the intent, i.e., trust the name or the comment,

without investigating which of the two is correct.

Example solution To resolve the inconsistency in Figure 6.17 the comment needs to be

corrected to document the “default include pattern” thus being con-

sistent with the name of the attribute—i.e., INCLUDE_NAME_DEFAULT.

F.java

1 /* (c) Copyright 2013 and following years, Venera Arnaoudova,
22
23 public class F {
24
25     // Example F1: Attribute name and type use antonyms, i.e., 

words with
26     // opposite meaning:
27     MAssociationEnd start2;
28
29     MAssociationEnd start = null;
30
31     // F2: Attribute comments and signature use antonyms, i.e., 

words with
32     // opposite meaning:
33
34     /**
35      * Configuration default exclude pattern,
36      * ie .*\/@href|.*\/@action|frame/@src
37      */
38     public final static String INCLUDE_NAME_DEFAULT 
39     = ".*/@href=|.*/@action=|frame/@src=";
40     
41
42 }
43
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Figure 6.17 Attribute signature and comment are opposite (F.2).

6.2 Linguistic AntiPattern Detector (LAPD)

We implemented possible LAs detection algorithms in an offline tool, named LAPD (Lin-

guistic AntiPattern Detector), for Java and C++ source code. LAPD analyzes signatures,

leading comments, and implementation of program entities (methods and attributes). It relies

on the Stanford natural language parser (Toutanova et Manning, 2000) to identify the POS

of the terms constituting the identifiers and comments and to establish relations between

those terms. Thus, given the identifier notVisible, we are able to identify that ‘visible’ is an

adjective and that it holds a negation relation with the term ‘not’.
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Finally, to identify semantic relations between terms LAPD uses the WordNet ontology

(Miller, 1995). Thus, we are able to identify that ‘enemy’ and ‘ally’ are antonyms.

Consider for example the code shown in Figure 6.18. To check whether it contains a LA of

type“Get” - more than an accessor (A.1) LAPD first analyses the method name. As it follows

the naming conventions for accessors—i.e., starts with ‘get’—LAPD proceeds and searches

for an attribute named imageData of type ImageData defined in class CompositeImageDescrip-

tor. The existence of the attribute indicates that the implementation of getImageData would

be expected to satisfy the expectations from an accessor, i.e., return the value of the corre-

sponding attribute. Thus LAPD analyses the body of getImageData and reports the method

as an example of “Get” - more than an accessor (A.1) as it contains a number of additional

statements before returning the value of imageData. Indeed, one can note that the value of

the attribute is always overridden (line 69) which is not expected from an accessor except if

the value is null—as for example the Proxy and Singleton design patterns. Further details

regarding the detection algorithms of LAs can be found in Appendix A.

For Java source code, we also made available an LAPD 3 online version integrated into

Eclipse as part of the Eclipse Checkstyle Plugin 4. Checkstyle 5 is a tool helping developers

to adhere to coding standards, which are expressed in terms of rules (checks), by reporting

violations of those standards. Users may choose among predefined standards, e.g., the Sun

coding conventions 6, or define their owns. Figure 6.18 shows a snapshot of a code example and

an LA, of type “Get” - more than an accessor (A.1), reported by the LAPD Checkstyle

Plugin3 detected in the example. After analyzing the entity containing the reported LA, the

user may decide to resolve the inconsistency or disable the warning report for the particular

entity.

6.2.1 Evaluation of the Performances

The goal of this study is to investigate the performances of the LAPD, with the purpose

of understanding to what extend the tooling can impact the study on the relevance on the

phenomenon. The quality focus is software comprehensibility that can be hindered by LAs.

The perspective is of researchers interested to develop recommending systems aimed at de-

tecting the presence of LAs and suggesting ways to avoid them. The context consists of four

Java projects, namely two versions of ArgoUML, one version of Cocoon, and one version of

Eclipse. Details regarding the projects can be found in Appendix B. We have chosen projects

having different size, and for one of them both an old version and a new one.

3. http://www.veneraarnaoudova.ca/tools

4. http://eclipse-cs.sourceforge.net/

5. http://checkstyle.sourceforge.net/

6. http://www.oracle.com/technetwork/java/codeconv-138413.html

http://www.veneraarnaoudova.ca/tools
http://eclipse-cs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.oracle.com/technetwork/java/codeconv-138413.html
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Figure 6.18 LAPD Checkstyle plugin: “Get” - more than an accessor (A.1).

The study aims at answering the research question:

RQ1: How Accurate are the Detected LAs?

Table 6.1 reports, for each project, the number of detected and validated LAs, as well as

the precision of the implemented algorithms. The validated sample for each LA is randomly

selected and its size is statistically significant considering a confidence level of 95% and a

confidence interval of ±10% (Sheskin, 2007).

Based on the validated sample, LAPD has an average precision of 71% 7 (see Table 6.1).

There are two cases in which the precision is below 10% and those are Attribute signature and

comment are opposite and Method signature and comment are opposite. This is due to the

difficulty of capturing opposite meaning. An example of the latter is method close, defined

in class DeltaProcessor (Eclipse), with comment “Closes the given element, which removes

it from the cache of open elements”, which will be detected because of the antonyms “open”

and “close”.

7. Originally we reported a precision of 72% (Arnaoudova et al., 2013) due to a larger sample for 5 of the
LAs.



80

Table 6.1 Detected LAs.
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Validated TP Precision

A.1 “Get” - more than an accessor 0 2 1 15 15/18 9 60%

A.2 “Is” returns more than a Boolean 2 0 4 26 24/32 24 100%

A.3 “Set” method returns 4 30 6 53 47/93 46 98%

A.4 Expecting but not getting a single instance 7 3 8 33 34/51 26 77%

B.1 Not implemented condition 20 28 43 232 74/323 58 78 %

B.2 Validation method does not confirm 1 8 11 235 70/255 52 74%

B.3 “Get” method does not return 1 3 2 57 38/63 37 97%

B.4 Not answered question 0 2 0 34 26/36 26 100%

B.5 Transform method does not return 0 86 15 44 58/145 57 98%

B.6 Expecting but not getting a collection 8 39 12 135 64/194 47 73%

C.1 Method name and return type are opposite 0 0 0 6 6/6 3 50%

C.2 Method signature and comment are opposite 7 20 12 243 72/282 6 8%

D.1 Says one but contains many 15 92 42 103 70/252 40 57%

D.2 Name suggests Boolean but type does not 14 13 21 138 64/186 36 56%

E.1 Says many but contains one 45 117 24 116 73/302 55 75%

F.1 Attribute name and type are opposite 1 0 0 0 1/1 1 100%

F.2 Attribute signature and comment are opposite 1 0 3 19 19/23 1 5%
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6.3 Relevance of the Phenomenon

The goal of this study is to investigate the presence of LAs in software projects, with

the purpose of understanding the relevance of the phenomenon. The quality focus is software

comprehensibility that can be hindered by LAs. The perspective is of researchers interested to

develop recommending systems aimed at detecting the presence of LAs and suggesting ways

to avoid them. The context consists open-source Java and C++ projects, namely ArgoUML,

Cocoon, Eclipse, Apache Maven, Apache OpenMeetings, GanttProject, boost, BWAPI, Com-

mitMonitor, and OpenCV. We have chosen projects from various application domains and

with different size. Details regarding the projects can be found in Appendix B.

The study aims at answering the research question:

RQ2: To What Extent do the Analyzed Projects Contain the LAs Defined in Section 6.1?

Table 6.2 shows the number of detected instances of LAs per kind of LA and per project.

Table 6.3 shows how relevant is the phenomenon in the studied projects. For each LA

we report its relevance with respect to the population for which it has been defined as well

as its relevance with respect to the total entity population of its kind. For example, the first

row of Table 6.3—“Get” - more than an accessor (A.1)—shows that such complex accessors

represent 2.65% of the accessors and 0.05% of all methods. By looking at the table, the

percentage of LAs instances may appear rather low (Min.: 0.02%; 1st Qu.: 0.17%; Median:

0.26%; Mean: 0.61%; 3rd Qu.: 0.65%; Max.: 3.40%). However, in their work on smell

detection using change history information Palomba et al. (2013) provide statistics about the

number of actual classes involved in 5 types of code smells in 8 Java projects; the percentages

of affected classes are below 1% for each type of smell, thus somewhat consistent with our

findings—although a direct comparison is difficult (due to the different types of entities) the

numbers can be taken as a rough indication. Slightly higher are the statistics provided by

Moha et al. (2010) in which for 10 projects the percentage of affected classes for 4 design

smells are as follows: Blob: 2.8%, Functional Decomposition: 1.8%, Spaghetti Code: 5.5%,

and Swiss Army Knife: 3.9%.

Moreover, when we consider only the relevant population, the phenomenon appears to be

sufficiently important to justify our interest (Min.: 0.02%; 1st Qu.: 1.19%; Median: 5.98%;

Mean: 16.89%; 3rd Qu.: 19.33%; Max.: 69.53%).

6.4 Discussions

Based on a close inspection of the source code of several open-source projects, we define

a catalog of 17 LAs that we believe are poor practices as they may impede program under-

standing. Those practices relate to inconsistencies among the name, implementation, and
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documentation of source code entities in OO programming languages, in particular methods

and attributes. We implement possible detection algorithms to automatically detect LAs and

estimate the overall precision of the detection to 71%. Using the detection tool—Linguistic

AntiPattern Detector (LAPD)—we study the prevalence of LAs in 11 Java and C++ projects

and show that the phenomenon appears sufficiently important to justify our interest.

6.4.1 Threats to Validity

Conclusion validity: Our study is an exploratory study in which we do not make use of

statistical tests to reject specific hypotheses. The only issue related to conclusion validity

is the representativeness of the sample used to validate the LAa detection precision. We

performed for each LA a random sampling across considering a confidence level of 95% and

a confidence interval of ±10%.

Internal validity: Threats to internal validity concern the selection of projects. We miti-

gate this threat by choosing projects different in size, application domain, and programming

languages.

Construct validity: In this work, threats to construct validity are mainly due to the

mapping between the LA definitions and their detection procedure. In terms of precision, we

have mitigated such a threat by manually analyzing a sample of the detected LAs. However,

it is worth noting that the detection relies on tools—ontological databases such as WordNet

(Miller, 1995) and natural language parsers such as the Stanford Part-of-Speech Analyzer

(Toutanova et Manning, 2000)—explicitly conceived to process natural language documents

rather than source code. As pointed out by Hindle et al. (2011), such tools can be far from

optimal when applied to source code.

External validity: Although we cannot really ensure full diversity (Nagappan et al., 2013),

the chosen projects are pretty different in terms of size, application domain, and program-

ming languages (Java and C++). As Zhang et al. (2013) show, application domain and

programming language are the two contexts that could impact source code documentation

metrics.

6.5 Conclusion

Previous works measure the quality of the lexicon by the quality of the code identifiers.

Our conjecture is that the quality of the identifiers taken in isolation may not be always suffi-

cient to reveal flaws. To prove our conjecture we analyze three open-source Java projects and

identify examples of lexicon inconsistencies that we believe may impair program understand-

ing. We abstract the recurring examples into a catalog of Linguistic Antipatterns (LAs),



83

which we define as recurring inconsistencies in methods/attributes name, implementation,

and comments. Thus, the catalogue provides examples of LAs from real projects, illustrated

their possible consequences, and outlines possible strategies for their detection. We categorize

the catalogue of LAs into six categories as follows:

— methods, categorized in cases where a method (i) does more than it says, (ii) says more

than it does, and (iii) does the opposite than it says.

— attributes, categorized in cases where an attribute (i) contains more than it says (ii)

says more than it contains, and (iii) contains the opposite than it says.

In addition, we have carried out a study investigating the presence of LAs in 11 Java/C++

projects. The study, which is based on a first implementation of detector named Linguistic

AntiPattern Detector (LAPD), allows us to conclude that LAs are not particular to the

project from which we define them and occur sufficiently often to justify our interest.
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Table 6.2 LAs : Detected occurrence in the studied projects.

A
rg

o
U

M
L

0
.1

0
.1

A
rg

o
U

M
L

0
.3

4

C
oc

oo
n

2
.2

.0

E
cl

ip
se

1
.0

A
pa

ch
e

M
a
ve

n
3

.0
.5

A
pa

ch
e

O
pe

n
M

ee
ti

n
gs

2
.1

.0

G
a
n

tt
P

ro
je

ct

bo
o
st

1
.5

3
.0

B
W

A
P

I

C
o
m

m
it

M
o
n

it
o
r

1
.8

.7
.8

3
1

O
pe

n
C

V

Total

A.1 “Get” - more than an
accessor

0 2 1 15 6 2 2 0 0 1 36 65

A.2 “Is” returns more than
a Boolean

2 0 4 26 1 0 5 137 2 36 33 246

A.3 “Set” method returns 4 30 6 53 314 29 9 6 73 50 67 641

A.4
Expecting but not get-
ting a single instance

7 3 8 33 40 78 42 16 0 0 5 232

B.1 Not implemented con-
dition

20 28 43 232 2 1 1 1 0 9 3 340

B.2
Validation method does
not confirm

1 8 11 235 27 1 0 297 4 18 19 621

B.3 “Get” method does not
return

1 3 2 57 17 5 3 0 0 0 0 88

B.4 Not answered question 0 2 0 34 0 0 1 5 0 0 3 45

B.5 Transform method
does not return

0 86 15 44 1 4 0 46 11 24 177 408

B.6
Expecting but not get-
ting a collection

8 39 12 135 14 27 19 12 55 3 16 340

C.1
Method name and re-
turn type are opposite

0 0 0 6 0 1 2 15 2 0 0 26

C.2
Method signature and
comment are opposite

7 20 12 243 7 68 8 55 44 288 105 857

D.1
Says one but contains
many

15 92 42 103 42 31 102 1272 219 47 825 2790

D.2
Name suggests Boolean
but type does not

14 13 21 138 9 25 11 89 171 151 194 836

E.1 Says many but con-
tains one

45 117 24 116 13 7 6 305 77 388 680 1778

F.1
Attribute name and
type are opposite

1 0 0 0 0 0 2 528 0 5 5 541

F.2
Attribute signature and
comment are opposite

1 0 3 19 0 1 0 9 3 88 94 218

126 443 204 1489 493 280 213 2793 661 1108 2262 10072
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Table 6.3 LAs : Relevance of the phenomenon in the studied projects.

Relevance
of the phe-
nomenon

Considered population

Relevance with re-
spect to the enti-
ties of the same
kind

A.1 “Get” - more than an
accessor

2.65% (65/2457) getters 0.05% (65/129984)

A.2
“Is” returns more than
a Boolean

7.44% (246/3307)
methods starting with
’is’

0.19%(246/129984)

A.3 “Set” method returns 10.95% (641/5855) methods starting with
’set’

0.49%(641/129984)

A.4
Expecting but not get-
ting a single instance

1.72% (232/13527)
methods expecting sin-
gle instance to be re-
turned

0.18%(232/129984)

B.1
Not implemented con-
dition

6.39% (340/5317) methods having a doc-
umented condition

0.26%(340/129984)

B.2
Validation method does
not confirm

69.31% (621/896) validation method 0.48%(621/129984)

B.3 “Get” method does not
return

0.52% (88/17065)
methods whose name
suggest that a result
will be returned

0.07% (88/129984)

B.4 Not answered question 1.19% (45/3783)
methods whose name
suggest Boolean value
as a result

0.03% (45/129984)

B.5 Transform method
does not return

19.33% (408/2111) transform method 0.31%(408/129984)

B.6
Expecting but not get-
ting a collection

23.35% (340/1456)
methods whose name
suggest that a collec-
tion is returned

0.26%(340/129984)

C.1
Method name and re-
turn type are opposite

0.02 % (26/129984) methods 0.02% (26/129984)

C.2
Method signature and
comment are opposite

2.53% (857/33910) documented methods 0.66%(857/129984)

D.1
Says one but contains
many

5.98%(2790/46624)

the number of at-
tributes whose name
suggests that it con-
tains a single object

3.41%(2790/81886)

D.2
Name suggests Boolean
but type does not

64.31% (836/1300)

then number of at-
tributes whose name
suggest that it contains
a boolean value

1.02% (836/81886)

E.1 Says many but con-
tains one

69.53% (1778/2557)
attributes whose
names suggest plural

2.17%(1778/81886)

F.1
Attribute name and
type are opposite

0.66% (541/81886) attributes 0.66% (541/81886)

F.2
Attribute signature and
comment are opposite

1.18% (218/18498) documented attributes 0.27% (218/81886)
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CHAPTER 7

LAS: PERCEPTION OF EXTERNAL DEVELOPERS

Highlight: In Chapter 6, we formulated the notion of source code LAs, i.e., recur-

ring poor practices in the naming, documentation, and choice of identifiers in the

implementation of an entity and we defined a catalog of 17 types of LAs related

to inconsistencies. To understand whether such LAs would be relevant for software

developers, we seek answer to the general question: Do developers perceive LAs as

indeed poor practices? We evaluate the relevance of LAs to developers from the

point of view of external developers—i.e., not familiar with the code in which the

LAs occur.

Although tools may detect instances of (different kinds of) bad practices, they may or

may not turn out to be actual problems for developers. For example, by studying the history

of projects Raţiu et al. (2004) showed that some instances of antipatterns, e.g., God classes

being persistent and stable during their life, are considered harmless.

This chapter aims at answering the questions stated above, by conducting an empirical

study with software developers. In this study, to which we will refer ad Study I, we showed

to 30 developers an extensive set of code snippets from three open-source projects, some of

which containing LAs, while others not. Participants were external developers, i.e., people

that have not developed the code under investigation, unaware of the notion of LAs. The

rationale here is to evaluate how relevant are the inconsistencies, by involving people having

no bias—neither with respect to our definition of LAs, nor with respect to the code being

analyzed.

7.1 Study Design

The goal of the study is to collect opinions about code snippets containing LAs from

the perspective of external developers, i.e., people new to the code containing LAs—with the

purpose of gaining insights about developers’ perception of LAs. The feedback of external

developers will help us to understand how LAs are perceived by developers who are new to

the particular code, as it is often the case when developers join a new team or maintain a

large project they are not entirely familiar with. Specifically, the study aims at answering

the following research questions:
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RQ1: How do External Developers Perceive Code Containing LAs? We investigate whether

developers actually recognize the problem and in such case how important they believe

the problem is.

RQ2: Is the Perception of LAs Impacted by Confounding Factors? We investigate whether

results of RQ1 depend on participant’s i) main programming language (for instance

Java versus C++, as the LAs were originally defined for Java), ii) occupation (i.e., pro-

fessionals or students), and iii) years of programming experience.

In the following, we report details of how the study has been planned and conducted.

7.1.1 Experiment Design

The study was designed as an online questionnaire estimated to take about one hour for

an average of two and a half minutes per code snippet. However, participants were told that

this time is a simple estimation, that they will be asked questions regarding 25 code snippets,

and that there is no actual time limit—i.e., they are free to take all the necessary time to

complete the questionnaire. Online questionnaire was preferred over in person interview as

it is more convenient for the participants. Participants were free to decide when to fill the

questionnaire and in how many steps to complete it—i.e., participants may decide to complete

the questionnaire in a single session or to stop in between questions and to resume later. To

avoid biasing the participants, we also consider as part of the questionnaire 8 code snippets

that do not contain any LA. Thus, we ask participants to analyze 25 code snippets (17 being

examples of LAs, and 8 not containing any LA), and to evaluate the quality of each example

comparing naming, documentation, and implementation. Ideally, we would have preferred

to evaluate an equal number of code snippets with and without LAs. This however would

have increased the required time with more than 20 minutes and increased the chances that

participants do not complete the survey. Thus, we decided to decrease the number of code

snippets without LAs by half (compared to the number of code snippets with LAs).

We selected examples covering the set of LAs from the analyzed projects that in our

opinion are representative of the studied LAs. In particular, we used the examples from our

previous work as the study was performed before the proceedings were publicly available.

For each code snippet, we formulate a specific question, trying to avoid any researcher

bias on whether the practice is good or poor. Note that if the question does not indicate

what aspect of the snippet the participants are expected to evaluate, there is a high risk that

the participant evaluate an unrelated aspect—i.e., performance or memory related. However,

specific questions are subject to the hypothesis guessing bias thus participants may evaluate

as poor practices all code snippets as they may guess that this is what is expected. This
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is why inserting code snippets that do not contain LAs is a crucial part of the design. To

compare the scores given by developers to code snippets that contain LAs and those that do

not, we perform a Mann-Whitney test. Thus, for example, when showing the code snippet

of method getImageData (used in Figure 6.18) corresponding to the example of “Get” - more

than an accessor, we asked participants to provide their opinion on the practice consisting of

using the word “get” in the name of the method with respect to its implementation.

To minimize the order/response bias, we created ten versions of the questionnaire where

the code snippets appear in a random order. Participants were randomly assigned to a

questionnaire. To achieve a design as balanced as possible, i.e., equal number of participants

for each questionnaire, we invited participants through multiple iterations. That is, we sent

an initial set of invitations to an equal number of participants. After a couple of days we sent

a second set of invitations where participants were randomly assigned to the questionnaire

that received the lower number of responses.

7.1.2 Objects

For the purpose of the study, we choose to evaluate LA instances detected and manually

validated in our previous work (Arnaoudova et al., 2013). Such LAs have been detected in

3 Java software projects, namely ArgoUML 0.10.1 and 0.34, Cocoon 2.2.0, and Eclipse 1.0.

Details regarding the projects can be found in Appendix B.

To avoid biasing the participants, we also consider as part of the questionnaire 8 code

snippets that do not contain any LA. We ask participants to analyze 25 code snippets (17

being examples of LAs, and 8 not containing any LA), and to evaluate the quality of each

example comparing naming, documentation, and implementation.

7.1.3 Participants

Ideally, a target population—i.e., the individuals to whom the survey applies—should be

defined as a finite list of all its members. Next, a valid sample is a representative sample of

the target population (Shull et al., 2007). When the target population is difficult to define,

non-probabilistic sampling is used to identify the sample. In this study, the target population

being all software developers, it is impossible to define such list. We selected participants

using convenience sampling (Shull et al., 2007). We invited by e-mail 311 developers from

open-source and industrial projects, graduate students and researchers from the authors’

institutions as well as from other institutions. 31 developers completed the study and after

the screen procedure 30 participants remained—11 professionals, and 19 graduate students

resulting in a response rate close to 10% as expected Groves et al. (2009). Participants were
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volunteers and they were not compensated in any way. Anonymity was preserved. Table 7.1

provides information on participants’ programming experience and Figure 7.1 shows their

native language and the country they live in. Note that the majority of the participants are

native French speakers and that only for 13% of the participants are native English speakers.

However, we believe that this threat to validity is limited as our questions relate to basic

grammar rules (e.g., singular/plural) and we analyze the justification for each question to

ensure that the participant understood the question. Note also that the majority of the

participants live in Canada.

7.1.4 Study Procedure

We did not introduce participants to the notion of LAs before the study. Instead, we

informed them that the task consists of providing their opinion of code snippets.

For each code snippet—containing LAs or not—we asked participants the five questions

reported in Table 7.2. With SI-q1 participants judge the quality of the practice on a 5-point

Likert scale (Oppenheim, 1992), ranging between ‘Very poor’ and ‘Very good’. The purpose

of SI-q2 is to ensure that the participants provide their judgement for the practice targeted

by the question. In SI-q3 we are interested to know if participants would undertake an

action. We then collect information on the type of action (SI-q4) or in case no action would

be undertaken the reason why (SI-q5). For both SI-q4 and SI-q5, we provide predefined

options, to decrease the effort and ease the analysis, however we left space in the form to

provide a customized answer. In addition, for each code snippet, we also allow participants

to share any additional comment they would make. At any point, participants are free to

decide not to answer a question by selecting the option ‘No opinion’.

7.1.5 Data Collection

We collected 31 completed questionnaires. Before proceeding with the analysis we applied

the following screening procedure: For each LA we remove subjects who chose ’No opinion’

as answer to SI-q1. The collected answers being in nominal and ordinal scales, standard

outlier removal techniques do not apply here.

Thus we first sought for inconsistent answers between questions SI-q1 and SI-q3, i.e., be-

tween the quality of the code snippet and whether an action should be undertaken. Although

one may judge a code snippet as ’Poor’ but believes that no action should be undertaken, we

fear that participants providing high number of such combinations may have misunderstood

the questions. We intentionally sought for participants providing high number of such com-

binations (> 75%), resulting in removing one participant.



90

Table 7.1 Study I - Participants characteristics.

# of Programming
participants experience (years)

< 5 ≥ 5

Graduate students 19 9 10
Professionals 11 1 10

Overall 30 10 20
Table 1

Canada Canada 22 0.733333333333333

Italy Italy 3 0.1

Other 5 0.166666666666667

The 
Netherland
s The Netherlands 1

0.0333333333333333

USA USA 2 0.0666666666666667

France France 2 0.0666666666666667

30

French French 12 0.375

English English 4 0.125

Arabic Arabic 3 0.09375

Italian Italian 3 0.09375

Other Other 10 0.3125

Bengali 2 0.0625

Chinese 2 0.0625

Asian 1 0.03125

Bulgarian 1 0.03125

Farsi 1 0.03125

Amharic 1 0.03125

Romanian 1 0.03125

Spanish 1 0.03125

32

Native language

French
English
Arabic
Italian
Other

Percentage
0% 10% 20% 30% 40%

31%
9%
9%
13%

38%

Country

Canada

Italy

Other

Percentage
0% 10% 20% 30% 40% 50% 60% 70% 80%

17%

10%

73%

�1

Figure 7.1 Study I—native language and country of the participants.

Then, we individually analyze the justification, i.e., answers of SI-q2, and we remove the

answer of a participant for an LA if it is clear that the participant judge an aspect differ-

ent from the one targeted by the LA. For example, when a participants are asked to give

their opinion on the use of conditional sentence in comments and no conditional statement

in method implementation, participant providing the following justification is removed for

the particular LA: “the method name is well chosen and is well commented too”. Thus, the

number of obtained answers for each kind of LA varies between 25 and 30, as it can be noticed

from Figure 7.4.

7.2 Study Results

In the rest of this section we present the results of the study providing both quantitative

(Section 7.2.1) and qualitative (Section 7.2.2) analyses.

7.2.1 Quantitative Analysis

Quantitative analysis pertain both RQs, i.e., RQ1 and RQ2.
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RQ1: How do External Developers Perceive Code Containing LAs?

We first analyzed the developers’ perception of examples without LAs. Figure 7.2 shows

violin plots depicting the developers’ perception of examples without LAs. As expected,

those examples are perceived as having a median ‘Good’ quality (1st quartile: ‘Neither good

nor poor’, median: ‘Good’, 3rd quartile: ‘Very good’).

Figure 7.3 shows violin plots depicting the developers’ perception of LAs individually for

each kind—having a median ‘Poor’ quality (1st quartile: ‘Poor’, median: ‘Poor’, 3rd quartile:

‘Neither good nor poor’). Mann-Whitney test indicates that the median score provided to

code without LAs is significantly higher than for code with LAs (p− value <0.0001), with a

large (d = 0.66) Cliff’s delta (d) effect size (Grissom et Kim, 2005). Overall, if we consider

all LAs, 69% of the participants perceive LAs as ‘Poor’ or ‘Very Poor’ practices. However,

as Figure 7.3 shows, the perception distribution varies among different LAs. For instance,

boxplots—i.e., the inner lines of violin plots—for A.3 (“Set” method returns), B.1 (Not im-

plemented condition), B.3 (“Get” method does not return), B.4 (Not answered question), C.2

(Method signature and comment are opposite), and F.2 (Attribute signature and comment are

opposite) have lower quartile at ‘Very Poor’, median at ‘Poor’, and, for all of them except

B.1, higher quartile at ‘Poor’.

We also observe that the perceptions of B.6 (Expecting but not getting a collection), D.2

(Name suggests Boolean but type does not), E.1 (Says many but contains one), and F.1

(Attribute name and type are opposite) have little variability and are generally ‘Poor’.

On the contrary, the most controversial LAs are A.1 (“Get” - more than an accessor)

and A.2 (“Is” returns more than a Boolean), with lower and higher quartiles being at ‘Poor’

and ‘Good’ respectively. Other controversial LAs are A.4 (Expecting but not getting a single

instance), B.2 (Validation method does not confirm), B.5 (Transform method does not return),

C.1 (Method name and return type are opposite), D.1 (Says one but contains many ), with

lower and higher quartiles being at ‘Poor’ and ‘Neither poor nor good’ respectively.

In addition to violin plots, we show proportions of the LA perception by grouping, on

the one hand, ‘Poor’ and ‘Very Poor’ judgements, and on the other hand, ‘Good’ and ‘Very

Good’ ones. Results are reported in Figure 7.4, where we sort LAs based on the proportion

of participants that perceive them as ‘Poor’ or ‘Very Poor’. We observe that, for all but three

LAs, majority of participants perceive LAs as ‘Poor’ or ‘Very Poor’. The three exceptions are

A.1 (“Get” - more than an accessor), A.4 (Expecting but not getting a single instance), and

D.1 (Says one but contains many), for all of which the percentage of participants perceiving

them as ‘Poor’ or ‘Very Poor’ is 36%, 37%, and 39%, respectively. These are the three LAs

having a median perception of ‘Neither poor nor good’ (see Figure 7.3).
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Fig. 3 Violin plots representing how participants perceive LAs.

between the lower and upper quartiles; a thin line is drawn between the lower and
upper tails. Overall, if we consider all LAs, 69% of the participants perceive LAs
as ‘Poor’ or ‘Very Poor’ practices. However, as Figure 3 shows, the perception dis-
tribution varies among di↵erent LAs. For instance, boxplots—i.e., the inner lines
of violin plots—for A.3 (“Set” method returns), B.1 (Not implemented condition),
B.3 (“Get” method does not return), B.4 (Not answered question), C.2 (Method
signature and comment are opposite), and F.2 (Attribute signature and comment
are opposite) have lower quartile at ‘Very Poor’, median at ‘Poor’, and, for all of
them except B.1, higher quartile at ‘Poor’.

We also observe that the perception of B.6 (Expecting but not getting a collec-
tion), D.2 (Name suggests Boolean but type does not), E.1 (Says many but contains
one), F.1 (Attribute name and type are opposite) has little variability and is gen-
erally ‘Poor’.

On the contrary, the most controversial LAs are A.1 (“Get” - more than an
accessor) and A.2 (“Is” returns more than a Boolean), with lower and higher
quartiles being at ‘Poor’ and ‘Good’ respectively. Other controversial LAs are
A.4 (Expecting but not getting a single instance), B.2 (Validation method does not
confirm), B.5 (Transform method does not return), C.1 (Method name and return
type are opposite), D.1 (Says one but contains many ), with lower and higher
quartiles being at ‘Poor’ and ‘Neither poor nor good’ respectively.

In addition to violin plots, we show proportions of the LA perception by group-
ing, on the one hand, ‘Poor’ and ‘Very Poor’ judgements, and on the other hand,
‘Good’ and ‘Very Good’ ones. Results are reported in Figure 4, where we sort
LAs based on the proportion of participants that perceive them as ‘Poor’ or ‘Very
Poor’. We observe that, for all but three LAs, majority of participants perceive
LAs as ‘Poor’ or ‘Very Poor’. The three exceptions are A.1 (“Get” - more than an

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8

Figure 7.2 Violin plots representing how participants perceive examples without LAs.

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very good

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very poor

Poor

Neither poor nor good

Good

Very goodVery
Good

Good

Poor

Very
Poor

Neither

Tuesday, 10 September, 13

Figure 7.3 Violin plots representing how participants perceive LAs.

RQ2: Is the Perception of LAs Impacted by Confounding Factors?

We grouped the results of the participants according to their (i) main programming lan-

guage (Java/C# or C/C++), (ii) occupation (student vs. professional), and (iii) years of

programming experience (< 5 or ≥ 5 years). The grouping concerning the main program-

ming language is motivated by the different way the languages handle Boolean expressions

i.e., in C/C++ an expression returning a non-null or non-zero value is evaluated as true,

whereas Java and C# do not perform this cast directly. For this reason, our conjecture is

that developers who are used to C/C++ would consider acceptable that a method/attribute

that should return/contain a Boolean could instead return/contain an integer.

Main Programming Language: We compared statistically the median perception

of participants having C/C++ as main programming language with participants having

Java/C# as main programming language. Results of Mann-Whitney test indicate no sig-
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Figure 7.4 Percentage of participants perceiving LAs as ‘Poor’ or ‘Very Poor’.

nificant difference (p-value=0.79) with a negligible Cliff’s delta effect size (d=0.01) when all

LAs are considered together. We obtained consistent results, i.e., no statistically significant

differences, when analyzing each LA separately.

Occupation: By considering all LAs together the difference between the rating given

by professionals and students is only marginally significant (p-value=0.06) with a negligible

effect size (d=0.10). By considering specific LAs, we found a statistically significant differ-

ence only for D.2 (Name suggests Boolean but type does not), p-value=0.049, with a medium

effect size (d=0.40), and a marginal significance for E.1 (Says many but contains one), p-

value=0.053, with a medium effect size (-0.39) this time in favor of students).

Experience: Finally, we compared the results between participants having a high expe-

rience (≥ 5 years) with others (< 5 years). We found no statistical difference (p-value=0.78)

and a negligible (d=-0.11) effect size on the whole data set—i.e., all LAs—as well as when

considering each LA separately. Hence, experience does not seem to play a role in the way

participants perceive LAs.
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Thus, we conclude that developers’ perceptions of LAs are not impacted by their main

programming language, occupation, or experience.

Next, we provide qualitative analysis on external developers’ perception of LAs.

7.2.2 Qualitative Analysis

For each type of LA, we briefly summarize its definition and we highlight the perception

of external developers.

A.1 - “Get” - more than an accessorA.1 - “Get” - more than an accessor

A getter that performs actions other than returning the corresponding attribute without

documenting it.

External developers’ perception

As shown in the stacked bar chart below, 36% (10 participants), perceived the practice as

‘Poor’ or ‘Very Poor’. 8 participants, i.e., 29%, perceived the practice as ‘Neither poor nor

good’, while they suggested renaming and–or refactoring actions. Finally, 10 participants,

i.e., 36%, perceived this practice as ‘Good’ or ‘Very good’ “because this is common practice”,

and, 3 of those commented that the documentation should specify the additional functionality.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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A.2 - “Is” returns more than a BooleanA.2 - “Is” returns more than a Boolean

Method name is a predicate, whereas the return type is not Boolean but a more complex

type allowing a wider range of values.

External developers’ perception

18 participants (60%)—i.e., the majority—perceived this practice as ‘Poor’ or ‘Very Poor’

and would have preferred a Boolean return type. 4 participants (13%) perceived this practice

as ‘Neither poor nor good’. However, 8 participants (27%) perceived this practice as ‘Good’

or ‘Very Good’. Interestingly, 3 of them explicitly referred to the return values being 0 or 1,

and indicated that they are commonly used instead of the Boolean values false and true.

However, the particular method returns −1 (which corresponds to “invalid”), 1 (“valid”), or

0 (“don’t know”).

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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A.3 - “Set” method returnsA.3 - “Set” method returns

A set method having a return type different than void and not documenting the return

type/values with an appropriate comment.

External developers’ perception

The majority—21 participants (75%)—perceived this practice as ‘Poor’ or ‘Very Poor’ from

which 12 participants (43%) perceived this practice as ‘Very poor’. 3 participants (11%)

perceived this practice as ‘Neither poor nor good’ and 4 participants (14%) perceived this

practice as ‘Good’ or ‘Very Good’. A participant indicated that in OO programming“majority

of coders will agree that the word ’set’ is usually used in opposition with ’get’ so that many

coders will suppose this method is setting a value to a member/attribute. This is a very poor

practice since this function is not setting anything but instead creating an object”. The only

participant that perceived this practice as ‘Very good’ justified that returning a value from

a ‘set’ method can have a benefit as “in most languages except Java it allows for chaining of

method calls”.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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A.4 - Expecting but not getting a single instanceA.4 - Expecting but not getting a single instance

Method name indicates that a single object is returned but the return type is a collection.

External developers’ perception

10 participants (37%) perceived this practice as ‘Poor’ or ‘Very Poor’. 11 participants (41%)

perceived this LA as ‘Neither poor nor good’. 6 of them justified that in the particular case,

‘expansion’ can be considered as ’list’, hence it does not require plural. The other 5 would

undertake a renaming. 6 participants (22%) considered this LA as ‘Good’ or ‘Very good’,

and also justified that ‘expansion’ suggests a collection, or that they would understand the

code by inferring the presence of a collection from the return type or from the comment.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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B.1 - Not implemented conditionB.1 - Not implemented condition

The method’ comments suggest a conditional behavior that is not implemented in the code.

When the implementation is default this should be documented.

External developers’ perception

17 participants (68%) perceived this practice as ‘Poor’ or ‘Very Poor’—11 of which (44%)

perceived this practice as ‘Very poor’. Some of them assumed that the implementation is

a placeholder for future code and explained “...that’s really dangerous! Such code builds

perfectly and sooner or later will be used by someone who will have a very bad surprise about

the results”. 2 participants (8%) perceived this practice as ‘Neither poor nor good’ and 6

participants (24%) perceived this practice as ‘Good’ or ‘Very Good’.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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B.2 - Validation method does not confirmB.2 - Validation method does not confirm

A validation method that neither provides a return value informing whether the validation

was successful, nor it documents how to proceed to understand.

External developers’ perception

The majority of the participants, i.e., 19 participants (68%), agreed that this is a poor/very

poor practice. The remaining 9 participants were more lenient—3 participants (11%)

perceived it as ‘Good’ and 6 participants (21%) as ‘Neither poor nor good’. This is mainly

because they trust the validation performed by the method, and do not expect a return

value. Indeed, one of them explained that it would be better to have a return value informing

whether the validation is successful but it is not necessary.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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B.3 - “Get” method does not returnB.3 - “Get” method does not return

The name suggests that the method returns something (e.g., name starts with “get” or

“return”) but the return type is void. The documentation should explain where the resulting

data is stored and how to obtain it.

External developers’ perception

25 participants (89%) perceived this practice as ‘Poor’ or ‘Very Poor’: all agreed that there

should be either a renaming (e.g., ‘fill’, ‘parse’, or ‘set’ instead of ‘get’) or code modification

(e.g., refactoring or changing the return type). 2 participants (7%) perceived this practice

as ‘Neither poor nor good’; 1 participant (4%) perceived this practice as ‘Good’.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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B.4 - Not answered questionB.4 - Not answered question

The method name is in the form of predicate, whereas nothing is returned.

External developers’ perception

24 participants (83%) perceived the practice as ‘Poor’ or ‘Very poor’. Only 4 participants

(14%) perceived this practice as ’Neither poor nor good’ and 3 of them would undertake

an action (renaming or code modification). Only 1 participant (3%) perceived it as ‘Very

good’ because “it is understandable”. This participant indicated C as her main programming

languages, while being not expert of Java.

Table 1

Very poor Poor Neither Good Very good Total
A.1 4% 32% 29% 18% 18% 100%
A.2 13% 47% 13% 20% 7% 100%
A.3 43% 32% 11% 11% 4% 100%
A.4 7% 30% 41% 11% 11% 100%
B.1 44% 24% 8% 12% 12% 100%
B.2 14% 54% 21% 11% 0% 100%
B.3 36% 54% 7% 4% 0% 100%
B.4 34% 48% 14% 0% 3% 100%
B.5 4% 54% 19% 15% 8% 100%
B.6 14% 66% 14% 7% 0% 100%
C.1 14% 54% 14% 14% 4% 100%
C.2 41% 41% 4% 7% 7% 100%
D.1 11% 29% 39% 14% 7% 100%
D.2 20% 57% 10% 13% 0% 100%
E.1 14% 62% 17% 7% 0% 100%
F.1 23% 54% 15% 8% 0% 100%
F.2 30% 63% 4% 4% 0% 100%

Table 1-1

Very poor Poor Neither Good Very good Total
A.1 1 9 8 5 5 28
A.2 4 14 4 6 2 30
A.3 12 9 3 3 1 28
A.4 2 8 11 3 3 27
B.1 11 6 2 3 3 25
B.2 4 15 6 3 0 28
B.3 10 15 2 1 0 28
B.4 10 14 4 0 1 29
B.5 1 14 5 4 2 26
B.6 4 19 4 2 0 29
C.1 4 15 4 4 1 28
C.2 11 11 1 2 2 27
D.1 3 8 11 4 2 28
D.2 6 17 3 4 0 30
E.1 4 18 5 2 0 29
F.1 6 14 4 2 0 26
F.2 8 17 1 1 0 27
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B.5 - Transform method does not returnB.5 - Transform method does not return

The method name suggests the transformation of an object, however there is no return value

and it is not clear from the documentation where the result is stored.

External developers’ perception

15 participants (58%) perceived this practice as ‘Poor’ or ‘Very poor’. 2 participants justified

the expected return type by providing as example the toString method. From the other 11

participants—5 participants (19%) perceived this practice as ‘Neither poor nor good’ and

6 participants (23%) perceived this practice as ‘Good’ or ‘Very Good’—2 would prefer to

have a (non void) return type, although perceiving the practice as ‘Neither poor nor good’;

and 1 perceived the practice as ‘Very good’ but justified: “I would blame for anything the

superclass as this is a polymorphic method”. On the contrary, 3 of the participants explicitly

stated that no return type should be expected from a transform method.
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B.6 - Expecting but not getting a collectionB.6 - Expecting but not getting a collection

The method name suggests that a collection should be returned, but a single object or

nothing is returned.

External developers’ perception

23 participants (79%) perceived the practice as ‘Poor’ or ‘Very poor’. To reflect the return

type, participants suggested a renaming, e.g., haveStats, statsEnabled, or statsShown.

From the other 6 participants, 2 (7%) perceived the practice as ‘Good’, while 4 (14%) as

‘Neither good nor poor’. One of these 4 participants justified the choice after wrongly

inferring that stats stands for ‘status’, whereas another participant was confused by the

Boolean return type.
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C.1 - Method name and return type are oppositeC.1 - Method name and return type are opposite

The intent of the method suggested by its name is in contradiction with what it returns.

External developers’ perception

19 participants (68%) perceived it as ‘Poor’ or ‘Very poor’. From the other 9—4 participants

(14%) perceived this practice as ‘Neither poor nor good’ and 5 participants (18%) perceived

this practice as ‘Good’ or ‘Very Good’—a participant suggested to rename the return type,

to avoid the use of antonyms; another admitted that “Even if the wording is not totally

clear we get that it returns the state”. The remaining 7 participants had no issue with this

practice, and highlighted that the existing comment “Saves the current enable/disable state

...” is complementary and clarifies the purpose of the method.
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C.2 - Method signature and comment are oppositeC.2 - Method signature and comment are opposite

The documentation of a method is in contradiction with its declaration.

External developers’ perception

22 participants (81%) condemned this practice, with 11 (41%) perceived it as ‘Very poor’.

One participant explicitly justified that she would trust the naming rather than the comment.

This is also reflected by the high percentage (74%) of participants who perceived that the

action to be undertaken would be to change the comment. 1 participants (4%) perceived

this practice as ‘Neither poor nor good’; 4 participants (15%) perceived this practice as

‘Good’ or ‘Very Good’.
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D.1 - Says one but contains manyD.1 - Says one but contains many

An attribute name suggests a single instance, while its type suggests that the attribute

stores a collection of objects.

External developers’ perception

Only 11 participants (39%) perceived this practice as ‘Poor’ or ‘Very poor’. 11 participants

(39%) perceived this LA as ‘Neither poor nor good’, and 7 of them justified their choice to

the lack of context. In other words, whether attribute target of type Vector is a good or

poor naming, it depends on whether the target is the entire collection or selected objects

contained in the collection. 6 participants (21%) perceived this practice as ‘Good’ or ‘Very

good’ assuming that target refers to the entire collection.
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D.2 - Name suggests Boolean but type does notD.2 - Name suggests Boolean but type does not

An attribute name suggests that its value is true or false, while its declaring type is not

Boolean and the declared type and values are not documented.

External developers’ perception

23 participants (77%) perceived this practice as at least ‘Poor’ when we showed them attribute

isReached of type int[]; they expected at least an array of Boolean values. A participant

suggested reachedItems as a more appropriate name. From the remaining participants, 3

perceived the practice as ‘Neither poor nor good’ (10%) and 4 as ‘Good’ (13%) and assumed

values are 0 for false and 1 for true.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

E.1 - Says many but contains oneE.1 - Says many but contains one

Attribute name suggests multiple objects, but its type suggests a single one.

External developers’ perception

22 participants (76%) perceived this practice as ‘Poor’ or ‘Very poor’. 2 of the remaining 7

participants—5 participants (17%) perceived this practice as ‘Neither poor nor good’ and 2

participants (7%) perceived this practice as ‘Good’—suggested that the attribute is a flag

indicating whether statistics are enabled. 2 of them also suggested to add comments to

improve understandability.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2
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F.1 - Attribute name and type are oppositeF.1 - Attribute name and type are opposite

The name of an attribute is in contradiction with its type as they contain antonyms.

External developers’ perception

20 participants (77%) perceived this practice as ‘Poor’ or ‘Very poor’. From the remaining

participants, 4 (15%) of them indicated that this naming may or may not be appropriate,

based on the context (thus perceiving it as ‘Neither poor nor good’); and 2 (8%) of them

perceived this practice as ‘Good’ and believed that the naming is perfectly legitimate (i.e., it

is not confusing to deal with “starting end and finishing end”) though one recommended

comments to clarify this inconsistency.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

F.2 - Attribute signature and comment are oppositeF.2 - Attribute signature and comment are opposite

Attribute declaration is in contradiction with its documentation.

External developers’ perception

A large majority of participants,i.e., 25 participants (93%), perceived this practice as ‘Poor’

or ‘Very poor’. One participant commented: “The most pernicious issue is that most of

coders will focus on the meaning of .*/@href=|.*/action= |frame /@src= (whatever it

means) although it is of paramount importance to check the ’exclude/include’ property;

depending on coders’ trend to check first the comment or the name of the member!”. Another

participant commented: “We don’t know who to believe the comments or the attribute

name”. Only 2 participants (7%) were more lenient with their perception—1 participant

perceived this practice as ‘Neither poor nor good’ and 1 participant as ‘Good’—one of which

commented that one is able to “get the intent”.

B.5

0% 25% 50% 75% 100%

8%15%19%54%4%

Very poor Poor Neither Good Very good

B.6

0% 25% 50% 75% 100%

7%14%66%14%

Very poor Poor Neither Good Very good

C.1

0% 25% 50% 75% 100%

4%14%14%54%14%

Very poor Poor Neither Good Very good

C.2

0% 25% 50% 75% 100%

7%7%4%41%41%

Very poor Poor Neither Good Very good

D.1

0% 25% 50% 75% 100%

7%14%39%29%11%

Very poor Poor Neither Good Very good

D.2

0% 25% 50% 75% 100%

13%10%57%20%

Very poor Poor Neither Good Very good

E.1

0% 25% 50% 75% 100%

7%17%62%14%

Very poor Poor Neither Good Very good

F.1

0% 25% 50% 75% 100%

8%15%54%23%

Very poor Poor Neither Good Very good

F.2

0% 25% 50% 75% 100%

4%4%63%30%

Very poor Poor Neither Good Very good

�2

7.3 Discussions

Overall, the majority of the LAs were perceived as poor or very poor. Some LAs are

perceived more severely than others, e.g., “Set” method returns (A.3), Not implemented con-



103

dition (B.1), and Method signature and comment are opposite (C.2). Developers found less

serious LAs where the return type is inconsistent with the method name, e.g., Method name

and return type are opposite (C.1) and Attribute name and type are opposite (F.1). Also,

some apparently bad practices in Java come from good or usual practices inherited from other

programming languages such as C. The LAs exhibiting the most diverse opinions, i.e., “Get” -

more than an accessor (A.1) and “Is” returns more than a Boolean (A.2) are those for which

documentation is crucial, as participants tend to wrongly assume the behavior. We observe

that participants are more lenient to some inconsistencies involving the naming and type of

an entity, i.e., Method name and return type are opposite (C.1) and Attribute name and type

are opposite (F.1), as compared to the same inconsistencies where the naming and comments

of an entity are involved, i.e., Method signature and comment are opposite (C.2) and At-

tribute signature and comment are opposite (F.2). Finally, results show that, in general, the

main programming language, occupation, and experience of participants did not significantly

influence the way developers perceive LAs.

7.3.1 Threats to Validity

Conclusion validity: We use proper non-parametric statistical tests and perform con-

founding factor analysis.

Construct validity: We manually validated the occurrences of the LAs that we showed to

participants, and we selected a sample representative of different kinds of LAs. There is a risk

that the collected perception is bound to the particular instances of LAs chosen rather to their

category. However, we limited this threat by collecting justifications from the participants

that helped us to understand whether the LAs is indeed is a general problem—which we found

sometimes to be the case—or whether, instead, it may depend on the particular context.

For what concerns the measurement of the study participants’ perception, we used ques-

tionnaires expressed in a Likert scale (Oppenheim, 1992), which helps to aggregate and

compare results from multiple participants.

Internal validity: When asking participants to evaluate code snippets, we formulated a

specific question thus possibly affecting the internal validity of the study as participants

may have guessed the expected answer (Shull et al., 2007). To cope with this threat, we also

evaluated a set of examples not containing LAs and showed a statistically significant difference

in developers’ perceptions. We analyzed the effect of experience and of the main programming

language used by developers. Another threat to validity is that external developers are only

provided with code snippets and thus unaware of the context, i.e., the particular project to

which a snippet belongs. Providing context may lead to more lenient evaluations by external

developers as they may resolve the inconsistencies from other places in the code (e.g., from
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the way the entity is used), which could bias the perception of the practice itself. Also, as

participants are external to the project, the lack of domain knowledge may have impacted

their perception. We believe that this threat is limited as LAs concern general inconsistencies

and thus are domain independent.

External validity: In terms of objects, the two studies have been conducted on four versions

of Java projects. Although we cannot really ensure full diversity (Nagappan et al., 2013),

the chosen projects are pretty different in terms of size and application domain. In terms of

subjects, the studies involved both students and professionals (from industry and from the

open-source community).

7.4 Conclusion

In Chapter 6, we defined a catalog of LAs that we believe are poor practices related to

inconsistencies among the name, implementation, and documentation of an entity. In this

chapter, we showed that code containing such LAs is perceived as poor by the majority

(69%) of the developers that we surveyed. Our study involved 30 external developers among

graduate students and professional, i.e., people that did not participate to the development

of the project on which LAs were detected and unaware of the notion of LAs. Overall,

participants perceived as more serious the instances when the inconsistency involved both

method signature and comments than those involving the method name and return type.
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Table 7.2 Study I - Questionnaire.

Question Possible answers

SI-q1: You judge this practice as: (Single choice)
Very poor
Poor
Neither poor nor good
Good
Very good
No opinion

SI-q2: Please justify (Free-form)

SI-q3: Would you undertake (Single choice)
an action with respect to the Change
practice? Keep it ‘as is’

No opinion

SI-q4: Illustrate the kind of (Multiple choice)
action you would undertake Comments (add/remove/modify)
(when this is the case). Renaming

Implementation (add/remove/modify)
Other

SI-q5: Explain the reason why (Multiple choice)
you would not undertake any It is a common practice
action (when this is the case). Naming and functionality are consistent

Comments and naming are consistent
Comments and functionality are consistent
Other
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CHAPTER 8

LAS: PERCEPTION OF INTERNAL DEVELOPERS

Highlight: In Chapter 7, we showed that a large majority of the external developers

perceive LAs as poor practices. However, some questions remain unanswered: Do

developers familiar with the code also perceive LAs as poor practices? If this is the

case, would they take any action and remove LAs? What causes LAs to occur? To

answer those questions, we evaluate the relevance of LAs to developers from the

point of view of internal developers—i.e., familiar with the code in which the LAs

occur—and investigate the actions that they would undertake to remove them (if

any).

This chapter aims at answering the questions stated above, by conducting an empirical

study with software developers who are familiar with the code in which the LAs occur. In

this study, to which we will refer as Study II, we involved 14 internal developers from 8

projects (7 open-source and 1 commercial), with the aim of understanding how they perceive

LAs in projects that they know, whether they would remove them, how (if this is the case),

and what caused LAs to occur at the first place. Here, we first introduce to developers the

definition of the specific LA under scrutiny, after which they provide their perception about

examples of LAs detected in their project.

8.1 Study Design

The goal of this study is to investigate the perception of LAs from the perspective of

internal developers, i.e., those contributing to the project in which LAs occur. Internal

developers will provide us not only with their opinion about LAs but also with insights on

the typical actions they are willing to undertake, to correct the existing inconsistencies and

possibly help us to understand what causes LAs to occur. The context consists of examples

of code, selected from projects to which the surveyed developers contribute. To extend the

external validity of the results, for this study, we considered projects written in different

languages, Java and C++. The study aims at answering the following research questions:

RQ1: How do Internal Developers Perceive LAs? This research question is similar to RQ1

of Study I, however here we are interested in the perception of developers familiar with

the code containing LAs, i.e., of people who contributed to it.



107

RQ2: What are the Typical Actions to Resolve LAs? Other than the opinion on the practices

described by LAs, we investigate whether developers are willing to undertake actions

to correct the suggested inconsistencies.

RQ3: What Causes LAs to Occur? We are interested to understand under what circum-

stances LAs appear to better cope with them.

8.1.1 Experiment Design

The study was designed as an online questionnaire. The number of LAs was selected

so that the questionnaire requires approximately 15 minutes to be completed, and there-

fore ensures a good responsiveness from internal developers. As in Study I, the time was

simply indicative, i.e., participants are free to take all the necessary time to complete the

questionnaire. As LAs were related to methods having different size and complexity, the

questionnaires contained between 5 and 6 examples, i.e., not always the same number. Thus,

each participant evaluates only a subset of the LAs. We selected examples of LAs from the

analyzed projects that in our opinion are representative of the studied LAs. We selected

the examples in a way to have higher diversity, i.e., so that the study includes examples of

all 17 types of LAs. Note that in the study with external developers (see Chapter 7) each

questionnaire contained examples of all LAs as it was designed to take more time.

8.1.2 Objects

To select the projects for this study we also used convenience sampling. We consider LAs

extracted from 8 software projects, specifically 1 industrial, closed-source project, namely

MagicPlan, and 7 open-source projects. The projects have different size and belong to differ-

ent domain, ranging from utilities for developers/project managers (e.g., Apache OpenMeet-

ings, GanttProject, commitMonitor, Apache Maven) to APIs (Boost, BWAPI, and OpenCV)

or mobile applications (MagicPlan). Details regarding the projects can be found in Ap-

pendix B. We chose more projects than in the study with external developers (Chapter 7),

in order to obtain a larger external validity from developers belonging to different projects

(including a commercial one), and in order to consider both Java and C++ code.

8.1.3 Participants

The study involved 14 developers from the projects mentioned above. As for the distribu-

tion across projects, one developer per project participated in the study, except for Boost, for

which 3 developers participated, and for BWAPI, for which 4 developers participated. Such 14

developers are the respondents from an initial set of 50 ones we invited to participate. Invited
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participants were committers whose e-mails were available in the version control repository

of the project. Participants were volunteers and they were not compensated. Anonymity was

preserved.

8.1.4 Study Procedure

We showed to participants examples of LAs detected in the project they contribute to.

As the goal of this work is to evaluate developers’ perception of LAs we did not re-evaluate

the precision but rather manually validated a subset of the detected examples to assure

that they are indeed representative of LAs. The number of LAs was selected so that the

questionnaire requires approximatively 15 minutes to be completed, and therefore ensures

a good responsiveness from internal developers. As LAs were related to methods having

different size and complexity, the questionnaires contained between 5 and 6 examples, i.e., not

always the same number.

We selected examples of LAs from the analyzed projects in a way to have higher diversity.

The study included examples of all 17 types of LAs. For each example, we first provided par-

ticipants with the definition of the corresponding LA, and then we asked them to provide an

opinion about the general practice—i.e., question SII-q0 “How do you consider the practice

described by the above Linguistic Antipattern?”—using, again, a 5-point Likert scale. Then,

we asked participants to provide indications about the specific instance of LA by asking the

questions shown in Table 8.1.

8.1.5 Data Collection

We collected responses of 14 developers regarding 47 unique examples of all types of

LAs except C.2 1. The collected answers represent 72 data points, where each data point

is a unique combination of a particular example (instance) of an LA and a developer who

evaluated it.

8.2 Study Results

In this section we present the results of the study with internal developers and provide

both quantitative (Section 8.2.1) and qualitative (Section 8.2.2) analyses.

1. None of the questionnaires containing examples of type C.2 was answered.
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Table 8.1 Study II - Questionnaire.

Question Possible answers

SII-q1: How familiar are you (Single choice)
with this code? I wrote it

I didn’t write it but I came across this code
Don’t remember seeing it before
Other

SII-q2: Why the inconsistency (Multiple choice)
occurred, i.e., what are the causes? Evolution (it was consistent initially)

Didn’t give it enough thought initially
Copy/paste and forgot to change
Reuse without changing since it is working
Other

SII-q3: Equivalent to SI-q3 Equivalent to SI-q3

SII-q4: Equivalent to SI-q4 (Free-form)

SII-q5: Equivalent to SI-q5 Equivalent to SI-q5

8.2.1 Quantitative Analysis

RQ1: How do Internal Developers Perceive LAs?

Regarding the general opinion of participants (i.e., answers of SII-q0), 51% of the times

participants perceived LAs as ‘Poor’ or ‘Very poor’. This percentage is lower than the

one obtained in Study I with external developers, i.e., 69%. In our understanding—and

also according to what we observed from developers’ comments (see Section 8.2.2)—such a

decrease in the proportion may sometimes be due to the context in which LAs occur where

internal developers perceive LAs as acceptable.

RQ2: What are the Typical Actions to Resolve LAs?

Participants would undertake an action in 56% of the cases, and in 44% of the cases they

believe that the code should be left ‘as is’. We discuss the reasons behind these two choices—

as reported by the participants—and illustrate them with examples in Section 8.2.2 2.

Overall, the kind of changes that participants are willing to undertake to reduce the effect

of LAs fall into one of the following (or a combination of those) categories: renaming, change 3

2. We do not report project names with the examples to avoid disclosing the confidentiality of the provided
answers.

3. A change may be one or more of the following: modification, addition, or removal.
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in comments, and change in implementation. In 42% of the cases, the solution involved

renaming, 14% involved a change of comments, and 11% a change in the implementation.

10% (5 out of 47) of the LAs shown to internal developers during the study have been

removed in the corresponding projects after we pointed them out. The removed examples

were instances of A.2 (“Is” returns more than a Boolean), A.3 (“Set” method returns), B.2

(Validation method does not confirm), and B.4 (Not answered question). We report the

examples and how they were removed in the corresponding LA tables when discussing the

perception of internal developers.

RQ3: What Causes LAs to Occur?

Note that internal developers may not be familiar with the whole project to which they

contribute and thus they may not be familiar with the examples that we show them. Thus,

regarding the possible causes of LAs, we limit our analysis only to cases where the participants

wrote the code containing the LAs and cases where they were knowledgeable of that code,

e.g., because they were maintaining it. The reported causes and the number of times they

occur are as follows (ordered by decreasing order of frequency):

1. Evolution (8): The code was initially consistent, but at some point an inconsistency

was introduced, hence causing the LA.

2. Developers’ decision (7): It is a design choice or simply personal preference.

3. Not enough thought (5): Developers did not carefully choose the naming when writing

the code.

4. Reuse (2): Code was reused from elsewhere without properly adapting the naming.
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8.2.2 Qualitative Analysis

A.1 - “Get” - more than an accessorA.1 - “Get” - more than an accessor

A getter that performs actions other than returning the corresponding attribute without

documenting it.

Internal developers

Perception Developers decided not to refactor the examples of this type. For instance,

regarding method getPhases which retrieves a result rather than being a simple

accessor, one of the developers commented on the decision not to change it:

“perhaps the method could be renamed to findPhasesForLifecycle, but if I

remember correctly this class is meant as a data store and then the getter is

fine”.
Causes Developers’ decision.

A.2 - “Is” returns more than a BooleanA.2 - “Is” returns more than a Boolean

Method name is a predicate, whereas the return type is not Boolean but a more complex

type allowing a wider range of values.

Internal developers

Perception Developers resolved the inconsistency of method isLeft returning float, by

removing the method (because the method was replaced by a different one)

after the forgotten call to isLeft was replaced with the new method. The

developer explained that the method was reused from elsewhere and the name

was not adapted after the functionality changed.

Causes Evolution , reuse.
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A.3 - “Set” method returnsA.3 - “Set” method returns

A set method having a return type different than void and not documenting the return

type/values with an appropriate comment.

Internal developers

Perception A developer commented: “Sometimes it is convenient that a ’set’ method re-

turns the old or the new value”. However, two of the LA instances that internal

developers resolved after we pointed out the inconsistency were of type A.3.

One occurred in method setConnectionAsSharingClient returning Map; the LA

was resolved by improving the (Javadoc) documentation, explaining the return

type and values. The other instance occurred in method setAnimationView,

returning AnimationView. The changes applied to resolve it impacted 3 files

(see Figure 8.1). The inconsistency was resolved by: i) improving the Javadoc

explaining that the old value of the attribute is returned (class Notification-

Manager) ii) renaming the local variable result to oldView in the child class to

reflect that the result contains the old value (class NotificationManagerImpl),

and iii) renaming the attribute myAnimationView to myOriginalAnimationView

in class DialogIml which contains the result of setAnimationView, to reflect

that it contains the old value.

Causes Evolution.

Class NotificationManager Class NotificationManagerImpl

Class DialogImpl

Wednesday, 4 September, 13

Figure 8.1 Changes applied to resolve an occurrence of A.3—setAnimationView.
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A.4 - Expecting but not getting a single instanceA.4 - Expecting but not getting a single instance

Method name indicates that a single object is returned but the return type is a collection.

Internal developers

Perception Developers expressed the need to rename method getMeetingMember re-

turning List<MeetingMemberDTO> and getAppointmentByRange returning

List<Appointment>; and to comment method getServersOption returning

ListOption<WebDavServerDescriptor>.

Causes Evolution.

B.1 - Not implemented conditionB.1 - Not implemented condition

The method’ comments suggest a conditional behavior that is not implemented in the code.

When the implementation is default this should be documented.

Internal developers

Perception The example we pointed out is documented as: “Release the current detector

and load new detector from file (if detector file name is not 0). Return true

on success.”, whereas its implementation always returns false. The developer

shared that “the code is part of a legacy module and it will be removed with the

next major library update”.
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B.2 - Validation method does not confirmB.2 - Validation method does not confirm

A validation method that neither provides a return value informing whether the validation

was successful, nor it documents how to proceed to understand.

Internal developers

Perception Method validateSnaps with return type void, is an example of B.2, that

was renamed to processSnaps after we pointed out the inconsistency. Other

examples of this LAs where developers expressed a need for renaming are

methods checkVertices and checkCurrentState. The 2 examples where devel-

opers decided not to take an action are method validateActivatedProfiles

which in case of invalid profile notifies the user with a warning; method

checkRecordingFile where the developer commented “a method that starts

with the name ”check” has a special validation meaning is new to me.”

Causes Evolution, not enough thought.

B.3 - “Get” method does not returnB.3 - “Get” method does not return

The name suggests that the method returns something (e.g., name starts with “get” or

“return”) but the return type is void. The documentation should explain where the resulting

data is stored and how to obtain it.

Internal developers

Perception For the two examples of this LA that we showed to the internal developers,

they would undertake a renaming. For method getTaskAttributes the

developer suggested to rename the parameter id2value making it clear that it

will hold the result. For method getUpstramProjects a developer commented:

“Some might say that this is OK as it’s a helper method for recursion when

building the tree. I wouldn’t”.
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B.4 - Not answered questionB.4 - Not answered question

The method name is in the form of predicate, whereas nothing is returned.

Internal developers

Perception After we pointed out method isSnapped, the code was removed as it was not

used anymore. Another developer suggested to rename method isLastWindow.

Causes Not enough thought.

B.5 - Transform method does not returnB.5 - Transform method does not return

The method name suggests the transformation of an object, however there is no return value

and it is not clear from the documentation where the result is stored.

Internal developers

Perception The example we showed to a developer is method PMCamera_Global3dToLocal3d

with void return type. The developer decided not to undertake an action “to

save resources—instead of creating a new object and return it, it is convenient

to store the result in a parameter.”

Causes Developers’ decision.

B.6 - Expecting but not getting a collectionB.6 - Expecting but not getting a collection

The method name suggests that a collection should be returned, but a single object or

nothing is returned.

Internal developers

Perception Examples of this LA where developers would undertake a renaming are

method getRows returning int where developer suggested getHeight as

more appropriate name; method getStates returning State. Examples

where developers consider the practice acceptable are method getBounds

returning Dimension; method getValues returning bool where the result is

stored in parameter values and the returned value“indicates success or failure”.

Causes Evolution, Not enough thought.
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C.1 - Method name and return type are oppositeC.1 - Method name and return type are opposite

The intent of the method suggested by its name is in contradiction with what it returns.

Internal developers

Perception Regarding method exit_transport_impl returning Enter_Transport, internal

developers would rename it, however, they were not certain about the new

name “in English there isn’t a word (that I know of) which bundles together

’enter’ and ’exit”’. Another example of this LA is method player_enemy_impl

returning a Player_Ally, where one of the developers justified the decision as

part of the design. However, other developers of the project would rename the

return type to reflect both states.

Causes Developers’ decision.

D.1 - Says one but contains manyD.1 - Says one but contains many

An attribute name suggests a single instance, while its type suggests that the attribute

stores a collection of objects.

Internal developers

Perception Internal developers suggested renaming for attribute mInstalledPackageInfo of

type PackageInfo[]. Regarding attribute projectorImage of type IplImage[]

a developer shared “Could go either way - change or keep. Maybe rename to

projectorImagePyramid (because it is one image at different resolutions) but it

gets too long.”. One developer expressed a concern regarding the LA as follows:

“There are technical terms that will most likely sound like plural to an expert

of the domain”.
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D.2 - Name suggests Boolean but type does notD.2 - Name suggests Boolean but type does not

An attribute name suggests that its value is true or false, while its declaring type is not

Boolean and the declared type and values are not documented.

Internal developers

Perception One questionnaire containing an example of this LA was answered. For at-

tribute _depends of type String, the developer says that the name is well cho-

sen as it matches standards of an imported library. The same developer also

find it obvious that the field contains a reference to the packages on which the

class depends.

Causes Developers’ decision.

E.1 - Says many but contains oneE.1 - Says many but contains one

Attribute name suggests multiple objects, but its type suggests a single one.

Internal developers

Perception Developers would resolve this LA by changing the implementation for attribute

flags of type unsigned char containing multiple bit flags by“expanding it to be-

come a bitfield”. An example where developers, perceived the“inconsistency too

minor to introduce changes to code working for years” is attribute named codecs

of type ImageCodecInitializer which is an initializer for multiple codecs.

Causes Not enough thought, reuse, developers’ decision.

F.1 - Attribute name and type are oppositeF.1 - Attribute name and type are opposite

The name of an attribute is in contradiction with its type as they contain antonyms.

Internal developers

Perception Attribute top_index of type bottom_index is an example of this LA that internal

developers would rename.
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F.2 - Attribute signature and comment are oppositeF.2 - Attribute signature and comment are opposite

Attribute declaration is in contradiction with its documentation.

Internal developers

Perception Developers believe that no action need to be undertaken for GC_start_time

documented as “Time at which we stopped world.” because “stop (the world)

is probably synonym to start for GC people”. An example where developers

believe that a renaming is needed is isOrdered commented as True if the

underlying table is BTREE UNORDERED.

8.3 Discussions

The perception of internal developers is generally consistent with the one of external

developers, i.e., the majority of the internal developers consider LAs as poor/very poor prac-

tices. However, the proportion is lower (51 vs. 69%), because sometimes the participants

felt that, based on the context, a particular practice was acceptable. Also, in 56% of the

cases participants suggested the LAs should be removed because they can affect program

comprehension. We also found evidence of cases where those LAs were resolved in recent

releases of the projects.

8.3.1 Threats to Validity

Conclusion validity: Due to the limited number of data points, we did not perform any

statistical test—we discussed results qualitatively rather than quantitatively. Thus, threats

to conclusion validity are not applicable in this study.

Construct validity: As for the study with external developers, we manually validated the

occurrences of the LAs that we showed to participants and we selected a sample representative

of different kinds of LAs. To measure participants’ perception, we again used a Likert scale

(Oppenheim, 1992).

Internal validity: A threat for the study is that internal developers could have been more

lenient when judging their own code. We mitigated this threat by asking them to motivate

their answer. Overall, we found a pretty high proportion of poor/very poor perception of

LAs. Finally, our results may have been impacted by the fact that participants in Study II

only validated a subset of the LAs. More data points for each LA may produce different

results.

External validity: In terms of objects, the study has been conducted on eight projects. As

for the study with external developers we selected projects that are very different in terms of
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size and application domain. In addition, for this study we selected open-source and closed-

source projects written in Java and C++. In terms of subjects, the study involved both

professionals (from industry and from the open-source community)—developers of projects

from which the LAs were detected.

8.4 Conclusion

In Chapter 7, we showed that 69% of the external developers evaluated code contain-

ing LAs as poor or very poor practices. In this chapter, we investigated the perception of

internal developers. We asked 14 (internal) developers of 7 open-source Java and 1 C++

commercial projects to provide us their perception of LAs that we found in the code of their

projects. Also in this case, the majority of developers (51%) evaluated LAs as poor or very

poor practices. The percentage is lower than the one observed in the study with external de-

velopers, because in some cases internal developers explained that the particular context and

circumstance made the detected LAs as an acceptable practice. When asked why the LAs

were possibly introduced—and developers had elements to answer—they pointed out main-

tenance activities—e.g., done by developers different from the original code authors—that

deteriorated the lexicon quality or lack of attention to naming conventions/comments. For a

conspicuous proportion of LAs (56%) developers highlighted that such LAs should possibly

be removed.

Interestingly, in 10% of the cases developers had already removed the inconsistencies that

we pointed out. From developers’ comments, we deduce that it might be more useful to point

out LAs as the developer writes source code—e.g., using our LAPD Checkstyle plugin—so

that the improvement can be done on-the-fly. It seems that whether on not developers remove

LAs also depends on the impact that this can have on the whole project. In other words,

developers may be less prone to improve the lexicon if this has a large impact on the code,

as such change can be too risky.
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CHAPTER 9

FACTORS IMPACTING THE IMPROVEMENT OF THE LEXICON

Highlight: In Chapters 7 and 8, we showed that both external and internal de-

velopers perceive code that contain LAs as poor or very poor. However, internal

developers’ explanations and the large proportion of yet unresolved LAs suggest

that there may be other factors that impact the decision of removing LAs, which

is often done through renaming. Thus, in this chapter, our objective is to under-

stand developers habits regarding the evolution of the source code lexicon and in

particular to investigate factors that may prevent developers from improving the

lexicon—i.e., from renaming.

When the source code of a program evolves (Lehman, 1980), its identifiers evolve too

(Abebe et al., 2009a). Thus, identifier renaming, i.e., the activity during which an entity—

e.g., a local variable, a method, or a class—changes its name, has a paramount importance

in software evolution 1.

We expect that developers rename when they feel that the name of an entity is not (any-

more) consistent with its functionality or when such a name may easily create comprehension

problems. In fact, many of the identifiers tagged as having ‘poor’ quality—e.g., LAs (Chap-

ter 6.1) and previous works (Deißenböck et Pizka, 2005; Abebe et al., 2009b; Lawrie et al.,

2007a)—can be improved, i.e., resolved, by renaming. However, Antoniol et al. (2007) show

that the evolution of source code lexicon is more limited compared to the evolution of the

structure of the source code. They argue that the limited ability to evolve the source code

lexicon is partially due to the cost of building a mental model of the system through its

lexicon. They also suggest that other factors for the limited evolution may be due to the lack

of advanced tool support for lexicon construction, documentation, and evolution. In Study

II (Chapter 8), we observe that internal developers solved only 10% of the examples con-

taining LAs, leading us to believe that, indeed, other factors may play a role in developers’

decision whether an entity will be renamed or not.

In this chapter, we are interested in developers’ habits regarding identifier renaming.

In particular, we want to understand when do developers rename, whether they consider

renaming as a straightforward activity, what factors would prevent them to rename, and what

1. Renaming is per se considered a refactoring activity (Fowler, 1999). In this chapter, we focus only on
how developers change the source code lexicon rather than on how the source code is restructured.
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are the renamings that they would benefit from if suggested by automatic recommendation

systems.

9.1 Survey Design

The goal of the survey is to understand developers’ habits regarding identifier renaming in

the context of OO programming regardless whether the renaming is performed to remove an

LA or not. The survey is designed from a researcher perspective with the purpose of gaining

insights about possible problems that prevent lexicon to evolve naturally.

Specifically, the survey aims at answering the following research questions:

RQ1: How Often do Developers Rename?

RQ2: Is Renaming Straightforward?

RQ3: What Factors would Prevent Developers to Rename?

RQ4: What Types of Renamings are Useful to be Automatically Recommended?

In the following, we report details of how the survey has been planned and conducted.

9.1.1 Participants

We invited 739 developers, via e-mail using a convenience sampling (Groves et al., 2009),

involving developers from the industry and open-source communities. Although we profile

survey participants based on their background, their identity is kept anonymous for confi-

dentiality purposes. 71 developers responded to the survey resulting in a response rate close

to 10% as expected (Groves et al., 2009).

9.1.2 Survey Procedure

The survey was designed as an online questionnaire. First, we clarified the vocabulary

we use and the context of the survey, i.e., we told participants that “Identifier renaming

consists of changing the name of an entity, where an entity, in the context of Object Oriented

programming, is a class, interface, attribute, method, constructor, parameter, or local vari-

able. By recommending identifier names or identifier renaming we mean suggesting a better

name from the beginning (at the time of naming) or at the time of renaming.” Next, we

ask specific questions allowing us to answer our research questions. We detail the questions

in Appendix C. At any point, participants were free to decide not to answer a question by

selecting the option ‘No opinion’ or interrupt the study.
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9.2 Survey Results

This section reports the results of the survey and provides both quantitative 9.2.1 and

qualitative 9.2.2 analyses.

9.2.1 Quantitative Analysis

First, we report information about participants’ background. In particular, Figure 9.1

shows statistics regarding the native language of the participants, whereas Figure 9.2 reports

their years of experience in industrial and open-source software development.

Figure 9.3 reports how often developers rename. Only 14% of participants rename rarely

(up to once per month): 46% rename occasionally (a few times per month) while 18% rename

frequently (a few times per week) and 21% rename very frequently (almost every day).

Figure 9.4 indicates activities during which developers rename. Note that a participant

may select more than one activity, thus the sum of the percentages is above 100%. Partic-

ipants rarely perform renaming as a standalone activity (17%). Often, they rename when

performing other refactorings (90%), changing the functionality (89%), adding new function-

ality (65%), understanding code (51%), or fixing a bug (42%).

Figure 9.5 provides insights about the opinion of participants about the cost of renaming.

35% of participants consider that renaming requires time and effort (at least in most cases);

32% consider that the cost of renaming depends on the particular case; 32% consider renaming

to be straightforward (at least in most cases). Note that the sum of the above is 99% due to

rounding errors.

Figure 9.6 reports results on the use of tool support for renaming. The majority of the

participants (72%) use automatic tool support to perform renaming. There are however

participants that rename manually (20%) and participants that perform both, manual and

automatic renaming (8%).

We asked participants to share the reasons for which they recall having decided not to

rename an entity; results are shown in Figure 9.7. 52% of the participants recall the reason

to be the potential impact on other projects. 35% recall that the renaming was too risky,

i.e., it might have introduced a bug. 25% of the participants answered that the high impact

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Dutch 2 0.028169014084507

German 2 0.028169014084507

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 0.0422535211267606

Persian 3 0.0422535211267606

Russian 6 0.0845070422535211

French 12 0.169014084507042

English 26 0.366197183098592

Unknown 4 0.0563380281690141

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 4%

Persian 3 4%

English 26 37%

French 12 17%

Russian 6 8%

German 4 6%

Other 23 32%

Native language

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

32%6%8%17%37%

English French Russian German Other

Figure 9.1 Native language of the participants.
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0-5 6-10 11-15 16+

How many years of experience do you have in 
software development?!!

8 22 19 21 70 Total

How many years of industrial experience do you 
have in software development?!!

27 18 15 11 71 71

How many years of experience do you have in 
development of open-source systems?!!

46 18 7 0 71

How many years of experience do you have in 
software development?!!

11% 31% 27% 30% 99%

How many years of industrial experience do you 
have in software development?!!

38% 25% 21% 15% 100%

How many years of experience do you have in 
development of open-source systems?!!

65% 25% 10% 0% 100%

Industrial experience in software development

Experience in development of open-source systems

0% 25% 50% 75% 100%

15%

10%

21%

25%

25%

65%

38%

0-5 6-10 11-15 16+

Figure 9.2 Experience of the participants in software development.

Renaming 
frequency

Very frequently (almost every day) 15 21%

Frequently (few times per week) 13 18%

Occasionally (few times per month) 33 46% 71

Rarely (up to once per month) 10 14% Total

Renaming frequency

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14%46%18%21%

Very frequently Frequently Occasionally Rarely

Figure 9.3 How often do developers rename?

When do you rename?

When changing the functionality 63 89% Total

When adding new functionality 46 65% 71

When understanding code 36 51%

When fixing a bug 30 42%

When performing refactoring 64 90%

Apart from other development activities 12 17%

When changing the functionality

When adding new functionality

When understanding code

When fixing a bug

When performing refactoring

Apart from other development activities

0% 20% 40% 60% 80% 100%

17%

90%

42%

51%

65%

89%

When do developers rename?Figure 9.4 Activities accompanying renaming.

Yes (identifier renaming 
requires time and effort)

18 25%

In most cases yes 7 10% 48

Sometimes no, sometimes 
yes

23 32%

In most cases no 17 24% 71

No (identifier renaming 
is straightforward)

6 8% Total

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8%24%32%10%25%

Yes, it requires time and effort In most cases yes Sometimes no, sometimes yes In most cases no No, it is straightforward

Do renaming has a cost?

Figure 9.5 Developers’ opinion on cost of renaming.

Automatic tool 
support

51 72% Total

Manually rename 14 20% 71

Both 6 8%

0% 25% 50% 75% 100%

8%20%72%

Automatic tool support Manually Both

How do developers rename?

Figure 9.6 How do developers rename?
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of the renaming on the project was the show-stopper and finally, 25% recall deciding not to

rename because of the high effort required.

We also asked participants whether a set of predefined factors would impact the decision

to undertake a renaming (Figure 9.8). The majority of participants consider important all

those factors. The factor that is worth highlighting here is the impact on other projects—69%

of participants say that this would definitely impact their decision.

Figure 9.9 shows when developers feel the need to rename. As expected, the majority

(66%) of the participants clearly state that they will definitely rename an entity if its name

is not consistent with its functionality. They made less strong statements about naming

conventions, spelling errors, and hard to understand words, but still the majority of par-

ticipants report that they will probably rename in such cases. Surprisingly, only 13% of

participants will probably rename if an entity contains an abbreviation—the majority of par-

ticipants (56%) will not rename. Finally, when the name of an entity contains a negation,

e.g., notOpen, 30% of the participants will rename, while 46% will not.

The majority (68%) of participants see a benefit of automatic recommendations for re-

naming (Figure 9.10) provided that such recommendations are non-intrusive and offer reliable

suggestions.

Finally, participants see a benefit of recommending the majority of renamings (Figure

9.11). However, we observe that fixing typos is the only type of renamings for which partici-

pants have strong opinion—42% of them consider that recommending this type of renamings

is definitely useful.

9.2.2 Qualitative Analysis

In the following we summarize the main results of the survey and we seek for explanation of

the quantitative results presented in Section 9.2.1. We illustrate results with comments from

the participants and we complement the survey output with examples that we collected from

online discussions of open-source projects (issue reports, mailing lists, and commit notes).

High effort 
required

18 25% Total

High impact on 
the system

18 25% 71

Too risky (could 
introduce bugs)

25 35%

Potential impact 
on other systems 
using this system 
(e.g. as a library)

37 52%

High effort required

High impact on the system

Too risky (could introduce bugs)

Potential impact on other systems  
using this system (e.g. as a library)

0% 10% 20% 30% 40% 50% 60%

52%

35%

25%

25%

It happened to developers not to rename because:Figure 9.7 Reasons for which developers already postponed or canceled a renaming.
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Definitely WILL impact Probably WILL impact Undecided Probably NO  impactDefinitely NO impact

You are not the owner of the code 27 29 7 4 2 Total

The entity being renamed is used in many 
places in the code

22 23 3 17 5 71

The entity being renamed is used in other 
projects

49 19 1 0 0

You are close to a release deadline 31 23 7 6 2

Insufficient (or lack of) domain knowledge 41 19 5 4 1

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not 
consistent

38% 41% 10% 6% 3%

The name does not follow the language 
naming conventions

31% 32% 4% 24% 7%

The name does not follow the team naming 
conventions

69% 27% 1% 0% 0%

The name contains an abbreviation/acronym 44% 32% 10% 8% 3%

The name contains a spelling error 58% 27% 7% 6% 1%

Code ownership

Many uses

Uses in other projects

Close to deadline 

Insufficient (lack of) domain knowledge

0% 25% 50% 75% 100%

1%

3%

7%

3%

6%

8%

24%

6%

7%

10%

1%

4%

10%

27%

32%

27%

32%

41%

58%

44%

69%

31%

38%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Figure 9.8 Factors impacting developers decision to undertake a renaming.

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not 
consistent

47 23 0 1 0 Total

The name does not follow the language 
naming conventions

24 33 7 5 2 71

The name does not follow the team 
naming conventions

24 27 12 6 0

The name contains an abbreviation/
acronym

0 9 21 35 5

The name contains a spelling error 31 29 5 6 0

The name contains misleading/hard to 
understand words

22 34 9 5 0

The name contains a negation 5 16 15 27 6

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not 
consistent

66% 32% 0% 1% 0%

The name does not follow the language 
naming conventions

34% 46% 10% 7% 3%

The name does not follow the team naming 
conventions

34% 38% 17% 8% 0%

The name contains an abbreviation/acronym 0% 13% 30% 49% 7%

The name contains a spelling error 44% 41% 7% 8% 0%

The name contains misleading/hard to 
understand words

31% 48% 13% 7% 0%

The name contains a negation 7% 23% 21% 38% 8%

The name and functionality are not consistent

The name does not follow the language naming conventions

The name does not follow the team naming conventions

The name contains an abbreviation/acronym

The name contains a spelling error

The name contains misleading/hard to understand words

The name contains a negation

0% 25% 50% 75% 100%

8%

7%

3%

38%

7%

8%

49%

8%

7%

1%

21%

13%

7%

30%

17%

10%

23%

48%

41%

13%

38%

46%

32%

7%

31%

44%

34%

34%

66%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Figure 9.9 When will developers rename?

Definitely YES Probably YES Undecided Probably NO Definitely NO

Do you think that recommend identifier names/renamings(and 
therefore suggesting a better name from the beginningor at the time 
of renaming)is useful?!!

22 26 0 12 1 Total

Do you think that recommend identifier names/renamings(and 
therefore suggesting a better name from the beginningor at the time 
of renaming)is useful?!!

31% 37% 0% 17% 1% 71

Is recommending identifier renamings useful?

0% 23% 45% 68% 90%

1%17%37%31%

Definitely YES Probably YES Probably NO Definitely NO

Figure 9.10 Developers’ opinion on the usefulness of recommending renamings.
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Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 23 21 9 4 3 Total

Attribute 16 29 6 7 2 71

Constructor 11 12 13 15 3

Getter/Setter 15 22 10 10 2

Other methods (excl. getters/setters 
and constructors)

16 26 8 8 2

Parameter 15 24 11 7 2

Local variable 9 20 10 14 6

Regarding synonyms 13 27 11 7 2

Regarding typos 30 19 5 5 1

Regarding the expansion of a word 11 23 11 12 3

Regarding the abbreviation of a word 9 18 13 17 3

Regarding words with opposite 
meaning

13 21 11 8 3

Regarding words with unrelated 
meaning

11 13 18 10 3

Regarding more specific name 13 20 13 7 2

Regarding more general name 12 17 15 9 2

Regarding adding a meaning 11 18 18 6 2

Regarding removing a meaning 10 16 17 10 2

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 32% 30% 13% 6% 4% Total

Attribute 23% 41% 8% 10% 3% 71

Constructor 15% 17% 18% 21% 4%

Getter/Setter 21% 31% 14% 14% 3%

Other methods (excl. getters/setters 
and constructors)

23% 37% 11% 11% 3%

Parameter 21% 34% 15% 10% 3%

Local variable 13% 28% 14% 20% 8%

Regarding synonyms 18% 38% 15% 10% 3%

Regarding typos 42% 27% 7% 7% 1%

Regarding the expansion of a word 15% 32% 15% 17% 4%

Regarding the abbreviation of a word 13% 25% 18% 24% 4%

Regarding words with opposite 
meaning

18% 30% 15% 11% 4%

Regarding words with unrelated 
meaning

15% 18% 25% 14% 4%

Regarding more specific name 18% 28% 18% 10% 3%

Regarding more general name 17% 24% 21% 13% 3%

Regarding adding a meaning 15% 25% 25% 8% 3%

Regarding removing a meaning 14% 23% 24% 14% 3%
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Definitely YES Probably YES Undecided Probably NO Definitely NO

Figure 9.11 Developers’ opinion on renamings that are useful to recommend.
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RQ1: How Often do Developers Rename? Renaming is an activity that participants

perform from almost every day (21%), a few times per week (18%), a few times per month

(46%), to once per month (14%). A developer commented: “There’s a balance to be struck:

- identifiers are communication, and as the code is refactored it is critical that identifiers

continue to correctly describe their purpose - changing identifiers tends to break APIs, and

sometimes they’re used for unintended purposes, over-frequent change is not good.”

RQ2: Is Renaming Straightforward? When we asked participants whether renaming

has a cost, only 8% answered that renaming is straightforward. 24% of participants think

that in most cases renaming has no cost, often due to the availability of automatic tool

support. Indeed the majority of participants (72%) use automatic tool support to perform

renaming, although 20% rename manually and 8% use a mix of both, i.e., rename manually

and automatically. 32% of participants believe that the cost of renaming depends on the

particular case: “Renaming identifiers that belong to non-local context (e.g., public or pro-

tected methods) has a potentially massive cost associated with breaking the interfaces between

components. Otherwise it is typically a rather cheap and non-disruptive exercise that may

have end benefit of more readable and consistent code. Another element of cost and risk is

when the identifiers are being bound to at runtime only (e.g., when classes are loaded by

name or methods are bound by name). It is not always easy to trace all such use cases in

a large system.” Indeed, renaming an entity that is part of a public API of a program has

a higher cost as it breaks backward compatibility and increases the integration cost of the

program in client programs. 10% of participants believe that in most cases renaming has

a cost, and finally 25% answer that renaming definitely requires time and effort. Another

example where renaming has a cost is when the team uses code reviews, as developers must

schedule a code review and justify their decision. A developer indicated that code reviews

impact the frequency of renaming “because you appear negatively to the boss when asking

for a review on a ‘too minor improvement”’. The cost of renaming also includes the cost of

finding a proper name and assuring that the new name reflects the purpose of the entity in

all scenarios that it is used. Quotes like “I have the feeling that your method name is not good

[..]” for method getBufferForWrite in an Eclipse issue report (issue #332248) indicates that,

indeed, developers spend time understanding the rationale behind names that are chosen by

other teammates.

RQ3: What Factors would Prevent Developers to Rename? It also appears that,

although necessary, some renamings are delayed. After discussing the difference between
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the term “delete” and “remove”, an ArgoUML developer concluded that: “[..] maybe I shall

rename these after next release” (issue #2938). We asked participants to share reasons for

which they recall having decided not to rename an entity. 52% recall the reason to be

the potential impact on other projects. A developer explains: “As a middleware developer,

providing a stable API is paramount for clients. There are numerous cases where we would

not rename a class or method despite an obviously better name being proposed, in order to

minimize the cost of integrating new versions.” 35% recall that the renaming was too risky,

i.e., it might have introduced a bug—a developer recalls: “I encountered a problem when my

colleague wrote Java code which uses reflection. I avoided renaming some classes/methods

which will be inspected by the reflection, since doing so can introduce unpredictable bugs.” 25%

of participants answered that the high impact of the renaming on the project was the show-

stopper and finally, 25% recall deciding not to rename because of the high effort required:

“I’m not touching poorly-worded APIs which are shared across multiple projects - the cost

of the change does not justify it [..].” Participants also shared that the impact on other

developers is sometimes decisive: “If too many people in the company know a thing by name

X it’s sometimes better to keep it even when name Y is more descriptive.” Other factors

impacting the decision to undertake a renaming are insufficient domain knowledge (85% of

participants), code ownership (79%), and close deadline (76%).

RQ4: What Types of Renamings are Useful to be Automatically Recommended?

Although participants consider useful to recommend the majority of the renamings, only

renaming towards correcting typos seems to receive strong definite support (42%). The main

reason is that many of the participants are concerned with the accuracy of such automatic

recommendations. This is particularly true for renamings where the meaning of the new

identifier is not preserved. A developer explains that recommending renamings“really depends

on have automated design analysis sufficiently good to know that the ”suggested” name is

better” and that it requires that one is able to “correctly infer design & domain meaning and

suggest an appropriate balance of conciseness & specificity in these two dimensions.” Another

developer shares that recommendations tools may be beneficial as some developers will take

the time to explore the alternative names but fears that others may simply “put less thought

into their names (if they feel they can rely on the tool to do the thinking for them)” and end

up “renaming back and forth”.

9.3 Discussions

Results show that renaming is a frequent activity that 39% of participants perform from

a few times per week to almost every day. Only 8% of the participants consider renaming
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to be straightforward. Some of the main factors that can prevent developers from renaming

are insufficient domain knowledge (85% of the participants), code ownership (79%), close

deadline (76%), the potential impact on other projects (52%), and the risk of introducing a

bug (35%).

9.3.1 Threats to Validity

Conclusion validity: We do not perform any statistical test, thus threats to conclusion

validity are not applicable in this study.

Internal validity: When asking participants questions, we formulate a set of predefined

answers—to limit the required effort—thus possibly affecting the internal validity of the

study as developers may limit their answers to the predefined list. To limit this threat, we

ask participants to recall examples from their past and we provide the possibility to report

customized answers.

Construct validity: To limit the threats to construct validity, questions must be carefully

designed in language that is clear and understandable by the participants. To this end, we

clarified the vocabulary we use throughout the survey by defining upfront what we mean by

renaming and recommendation of renaming. For each question, we also provide the possibility

for participants to report if they did not understand the question; thus not biasing the results

of the survey.

External validity: Although we cannot really ensure full diversity (Nagappan et al., 2013),

the study involved developers from both the industrial and the open-source communities.

9.4 Conclusion

This chapter provides evidence that the evolution of source code lexicon is not a straight-

forward activity. 71 developers of industrial and open-source projects identified several factors

that prevent them from renaming when they feel the need to do so. We also show the need for

better tool support to facilitate developers’ task—e.g., by handling renaming across projects

possibly written in different programming languages. The study we performed also confirms

our hypothesis that it may be more useful for developers to point out LAs at the time of

writing code.
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CHAPTER 10

CONCLUSION AND FUTURE DIRECTIONS

Program comprehension is a key activity during software development and maintenance

as although frequently performed—even more often than actually writing code (Kersten et

Murphy, 2005)—it is a difficult activity (Goldberg, 1987). The difficulty to understand a

program increases with its complexity and as a result comprehension is, in the best-case sce-

nario, more time consuming but can also lead to introducing faults in the program. Several

works attempt to identify complex and fault prone programs using structural measures for

program complexity. However, from early theories studying developers’ behavior while under-

standing a program we know that identifiers and comments—i.e., the program lexicon—are

part of the factors that affect the psychological complexity of a program, i.e., factors that

make a program difficult to understand and maintain by humans (Weissman, 1974; Brooks,

1983). Early research also suggest that the difficulty may come from contradictions between

a program’ code and its comment (Brooks, 1983).

Thus, in this dissertation we formulated the following thesis:

Our thesis is that poor lexicon negatively impacts the quality of software, that

the quality of the lexicon depends on the quality of individual identifiers but also

on the consistency among identifiers from different sources (name, implementation,

and documentation), and that the definition of practices that result in poor quality

lexicon increases developer awareness and thus contributes to the improvement of

the lexicon.

To validate our thesis, we provided the following main contributions:

— We brought evidence that measures evaluating the lexicon quality are an asset for

fault explanation and prediction. In particular, we showed that measures such as

LBS (Abebe et al., 2009b) and HEHCC (Arnaoudova et al., 2010) improve the per-

formance of explanatory and prediction models when added to structural complexity

measures such as the CK metric suite and LOC, respectively. The advantage of mea-

sures evaluating the lexicon quality with respect to structural measures is that lexicon

measures are easier to understand, interpret, and eventually avoid or fix.

— We also contributed to the improvement of the lexicon consistency by defining a

new family of antipatterns, i.e., Linguistic Antipatterns (LAs), for program entities

(i.e., methods and attributes). In particular, we defined a catalog of Linguistic An-
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tipattern (LA) related to inconsistencies among the name, implementation, and doc-

umentation (i.e., comment) of a program entity. We evaluated the catalog from the

point of view of industrial and open-source developers and we showed that the major-

ity of the developers perceive LAs as poor practices and therefore must be avoided.

Provided that static analysis tools struggle to gain acceptance among developers, we

distilled a subset of canonical LAs (see Table 10.1) recognized by external (column

SI) and–or internal (column SII) developers as poor practices. Canonical LAs are 1)

perceived as ‘Poor’ or ‘Very poor’ by at least 75% of the external developers, 2) per-

ceived as ‘Poor’ or ‘Very poor’ by all internal developers (due to the limited number

of data points), or 3) those LAs for which internal developers undertook an action to

resolve them. Canonical LAs would likely gain developer acceptance if their detection

is accurate.

— We perform a survey with open-source and industrial developers to gain insights about

renaming and understand why they resolved only part of the examples containing LAs.

We report factors that may prevent the improvement of the source code lexicon.

Table 10.1 Canonical LAs.

SI SII

A.2 “Is” returns more than a Boolean X

A.3 “Set” method returns X X

B.2 Validation method does not confirm X

B.3 “Get” method does not return X

B.4 Not answered question X X

B.6 Expecting but not getting a collection X

C.2 Method signature and comment are opposite X

D.2 Name suggests Boolean but type does not X

E.1 Says many but contains one X

F.1 Attribute name and type are opposite X X

F.2 Attribute signature and comment are opposite X X

10.1 Limitations

Our approach and results are subject to the following limitations:
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Identifier Quality and Code Quality

We provide evidence that metrics evaluating the quality of source code lexicon capture

additional information that is not captured by metrics evaluating the structure of the code.

We also show that this additional information is an asset as it improves software fault ex-

planation and prediction. However, our results do not allow us to claim any causal relation

between the quality of source code lexicon and software quality.

We investigate the relation between lexicon quality (i.e., HEHCC and LBS) and fault

proneness in multiple versions of three Java projects only. More projects are needed for Java

as well as other programming languages before being able to generalize the results.

To approximate context coverage we use the textual similarity between entities using

LSI. Although LSI is known to deal with synonymy and polysemy, a domain ontology such

as WordNet (Miller, 1995) may lead to a more accurate context representation.

Limitations of LAs

We defined LAs and group them into categories based on a close inspection of source

code examples from several open-source projects written in Java. Thus, they may not be

representative inconsistencies of the entire population of source code entities.

To detect LAs we rely on tools—ontological databases such as WordNet (Miller, 1995)

and natural language parsers such as the Stanford CoreNLP (Toutanova et Manning, 2000)—

explicitly conceived to process natural language documents rather than source code.

To evaluate the precision of LAPD we manually validated a random sample of LA ex-

amples occurring in four open-source Java projects. Thus, result from a validation by the

original developers and on projects written in other programming languages may produce

different results.

The evaluation of LAs is threatened by the fact that developers’ perceptions are bound to

the particular examples rather than the practice itself. When asking participants to evaluate

code snippets containing LAs, we formulate a specific question thus possibly affecting the

internal validity of the study as participants may guess the expected answer (Shull et al.,

2007). Also, as participants in Study I are external to the project, the lack of domain

knowledge may have impacted their perception. Participants in Study II are subject to the

threat that they could have been more lenient with their own code. Also, due to the limited

number of data points in Study II, we did not perform any particular analysis and we discuss

results qualitatively rather than quantitatively.
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10.2 Future Directions

Our work opens several new research directions. We outline some of them as follows:

Lexicon Quality and Code Quality

In the future we plan to study the relation between LAs and software faults. Moreover,

future studies that concentrate on a causal relation between lexicon quality and code quality

are needed. For example, to provide empirical evidence that HEHCC, LBS, and LAs indeed

impact program comprehension, a controlled experiment must be designed where subjects

are asked to understand part of source code of a project with poor lexicon quality and a

version where the lexicon was improved. The impact would be measured in terms of the

degree of understanding, the time to understand, and the effort to understand—e.g., using

an eye-tracking system. In addition, controlled studies evaluating whether poor identifier

quality leads to fault introduction would be very valuable to the community. Such studies,

would ask participants to introduce a new feature or modify an existing one in different

versions of a project, i.e., with poor quality lexicon and a version with improved lexicon.

Improve the Detection of LAs

Improvements of the detection of LAs can consider project specific and domain specific

knowledge. For example, in their recent work Yang et Tan (2013) propose an approach to

mine semantically related words in a project or multiple projects from the same domain.

Similar work has been done by Howard et al. (2013) where the authors mine semantically

similar words across projects from multiple domains. Also, in their recent work, Gupta et al.

(2013) proposed an approach for POS tagging of source code identifiers and showed that the

approach parses identifiers 10 to 20 percent more accurately. The LAPD would certainly

benefit from such approaches and increases the precision of detecting LAs.

Benefit of Reporting Poor Lexicon Quality On-The-Fly

As our results show, developer’s decision whether to improve the lexicon through renam-

ing may sometimes be affected by several factors. We thus hypothesize that an on-the-fly

detection of LA would be more beneficial. It would be interesting to empirically validate this

hypothesis. In addition, it would be also beneficial to study whether systematically reporting

LAs decreases the number of examples containing LAs over time. If this is indeed the case,

we may hope that such on-the-fly tools—reporting LA but also other poor lexicon quality

practices—can be integrated in the environment in which students learn to program and

improve the quality of the programs over time.
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Study the Impact of Removing LAs

From our study with developers on factors that may prevent renaming, we recommend

that future work also provides support for renaming program entities across projects and

particularly across projects written in different programming languages. Further support is

also needed to rename entities used in reflection. Finally, some developers expressed reluc-

tance to rename an entity because “if too many people in the company know a thing by name

X it’s sometimes better to keep it even when name Y is more descriptive”. We encourage fu-

ture research to study whether indeed renaming may have such negative consequences. Such

empirical studies may consider three main treatments, for instance 1) the program where

the renaming is not performed, 2) the program where the renaming is performed, and 3)

the program where the renaming is performed and documented—e.g., using a tool such as

REPENT (Arnaoudova et al., 2014).
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LAs: Detection Algorithms
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Detection algorithms

A.1—“Get” - more than an accessor: Find accessor methods by identifying methods

whose name starts with ‘get’ and ends with a substring that corresponds to an attribute in

the same class and where the attribute’s declared type and the accessor’s return type are the

same. Then, identify those accessors that are performing more actions than returning the

corresponding attribute. Cases where the attribute is set before it is returned (i.e., Proxy and

Singleton design patterns) should not be considered as part of this LA. For a detection built

on top of an Abstract Syntax Tree (AST) expressions other than a return statement—where

the attribute is returned—can be allowed only if they are child of a conditional check for null

value. Other measures for complexity, such as LOC or McCabe’s Cyclomatic Complexity,

can be used for a simpler but less accurate detection.

A.2—“Is” returns more than a Boolean: Find methods starting with “is” and returning

a type (i.e., the return type is not void) that is not Boolean.

A.3—“Set” method returns: Find modifier methods (or more generally methods whose

name starts with “set”) and whose return type is different from void.

A.4—Expecting but not getting a single instance: Find methods returning a collec-

tion (e.g., array, list, vector, etc.) but whose name ends with a singular noun and does not

contain a word implying a collection (e.g., array, list, vector, etc.).

B.1—Not implemented condition: Find methods with at least one conditional sentence

in comments but with no conditional statements in the implementation (e.g., no control

structures or ternary operators).

B.2—Validation method does not confirm: Find validation methods (e.g., method

names starting with “validate”, “check”, “ensure”) whose return type is void and that do not

throw an exception.

B.3—“Get” method does not return: Find methods where the name suggests a return

value (e.g., names starting with “get”, “return”) but where the return type is void.

B.4—Not answered question: Find methods whose name is in the form of predicate

(e.g., starts with “is”, “has”) and whose return type is void.

B.5—Transform method does not return: Find methods whose name suggests a trans-

formation of an object, (e.g., toSomething, source2target) but its return type is void.

B.6—Expecting but not getting a collection: The method name suggests that it returns

(e.g., starts with “get”, “return”) multiple objects (e.g., ends with a plural noun), however

the return type is not a collection.

C.1—Method name and return type are opposite: Find methods where the name and

return type contain antonyms.
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C.2—Method signature and comment are opposite: Find methods whose name or

return type have an antonym relation with its comment.

D.1—Says one but contains many: Find attributes having a name ending with a singular

noun and having a collection as declaring type.

D.2—Name suggests Boolean but type does not: Find attributes whose name is struc-

tured as a predicate, i.e., starting with a verb in third person (e.g., “is”, “has”) or ending with

a verb in gerund/present participle, but whose declaring type is not Boolean.

E.1—Says many but contains one: Find attributes having a name ending with a plural

noun, however their type is not a collection neither it contains a plural noun.

F.1—Attribute name and type are opposite: Find attributes whose name and declar-

ing type contain antonyms.

F.2—Attribute signature and comment are opposite: Find attributes whose name or

declaring type have an antonym relation with its comment.
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ANNEXE B

Studied Projects
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In the following we first provide the list of all studied projects in this dissertation. We

then provide the particular versions of the projects used for each study.

Projects overview

ArgoUML 1: An open-source UML modeling tool.

Apache Maven 2: An open-source software project management tool.

Apache OpenMeetings 3: An open-source project for meeting management.

boost 4: An open-source set of libraries for C++.

BWAPI 5: An open-source API for the StarCraft Brood War game.

Cocoon 6: A Spring-based framework to build Web applications.

CommitMonitor 7: An open-source application for monitoring repositories.

Eclipse 8: A well known framework and Integrated Development Environment (IDE).

GanttProject 9: An open-source project management tool.

MagicPlan 10: A closed-source mobile application for floor plan creation.

OpenCV 11: An open-source library for real-time image processing.

Rhino 12: An open-source implementation of JavaScript.

Projects’ versions

All tables report information about the studied versions and the LOC 13.

Table B.1 reports the projects analyzed to study the relation between numHEHCC and

LOC for fault explanation (Chapter 4). All projects are written in Java.

Table B.2 lists the projects that we use to study whether LBS help to improve fault

prediction (Chapter 5). All projects are written in Java.

1. http://argouml.tigris.org

2. http://maven.apache.org/

3. http://openmeetings.apache.org/

4. http://www.boost.org/

5. https://code.google.com/p/bwapi/

6. http://cocoon.apache.org

7. https://code.google.com/p/commitmonitor/

8. http://www.eclipse.org

9. http://www.ganttproject.biz/

10. http://www.sensopia.com/english/index.html

11. http://opencv.org/

12. www.mozilla.org/rhino

13. LOC for all projects is calculated using CLOC: http://cloc.sourceforge.net/.

http://argouml.tigris.org
http://maven.apache.org/
http://openmeetings.apache.org/
http://www.boost.org/
https://code.google.com/p/bwapi/
http://cocoon.apache.org
https://code.google.com/p/commitmonitor/
http://www.eclipse.org
http://www.ganttproject.biz/
http://www.sensopia.com/english/index.html
http://opencv.org/
www.mozilla.org/rhino
http://cloc.sourceforge.net/
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Table B.1 Projects analyzed to study the numHEHCC for fault explanation.

Project Version Size (LOC)

ArgoUML 0.16 105K

Rhino 1.4R3 18K

Table B.3 lists the projects that we used to study LAs (Chapters 6, 7, and 8). Projects

are written in Java and–or C++. For projects where we did not provide a version, we used

version control (accessed on 31/05/2013).
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Table B.2 Projects analyzed to study LBS for fault prediction.

Project Version Size (LOC) Classes
Total Defective

ArgoUML 0.10.1 82K 863 49
0.12 91K 946 47
0.14 107K 1227 93
0.16 105K 1185 152

0.18.1 118K 1249 52
0.20 165K 1333 127

Eclipse 1.0 475K 4596 96
2.0 792K 5985 163

2.1.1 991K 6748 98
2.1.2 992K 6750 78
2.1.3 993K 6754 149

Rhino 1.4R3 18K 94 66
1.5R1 30K 124 22
1.5R3 39K 166 98
1.5R4 41K 180 35
1.5R5 44K 181 39
1.6R1 51K 178 37
1.6R4 51K 180 138
1.6R5 51K 124 37

Table B.3 Projects analyzed to study LAs and developers’ perception.

Project Version Size (LOC) Language

ArgoUML 0.10.1 82K Java
0.34 195K

Cocoon 2.2.0 60K Java

Eclipse 1.0 475K Java

Apache Maven 3.0.5 71 K Java

Apache OpenMeetings 2.1.0 52 K Java

GanttProject 05/2013 57 K Java

boost 1.53.0 1.9 M C++

BWAPI 05/2013 118 K C++

CommitMonitor 1.8.7.831 148 K C++

OpenCV 05/2013 544 K Java, C++
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ANNEXE C

Survey on Identifier Renaming
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Tables C.1, C.2, and C.3 report the questions used for the survey on identifier renaming

(Chapter 9).
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Table C.1 Survey questions—part I.

q1: How often do you rename? (Single choice)
© Never
© Rarely (up to once per month)
© Occasionally (few times per month)
© Frequently (few times per week)
© Very frequently (almost every day)
© Other

q2: Justification/comment on the frequency of identifier renaming: (Free-form)

q3: When do you rename? (Single choice)
© When changing the functionality
© When adding new functionality
© When understanding code
© When fixing a bug
© When performing refactoring
© Apart from other development activities
© Other

q4: Justification/comment on when do you rename: (Free-form)

q5: Do you think that identifier renaming has a cost? (Single choice)
© No (identifier renaming is straightforward)
© In most cases no
© Sometimes no, sometimes yes
© In most cases yes
© Yes (identifier renaming requires time and effort)
© Other

q6: Justification/comment on cost of identifier renaming: (Free-form)

q7: From your experience, can you remember a case where you decided not to
perform a renaming? If yes, why? (Multiple choice)

� High effort required
� High impact on the system
� Too risky (could introduce bugs)
� Potential impact on other systems using this system (e.g., as a library)
� Other

q8: Please describe the experience (if any): (Free-form)
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Table C.2 Survey questions—part II.

q9: Do you use automatic tool support for identifier renaming? (Single choice)
© Yes, I use a tool integrated in my IDE
© No, I manually search and replace occurences of the old name
© Other

Would you rename an entity if: (Single choice, 5-point Likert scale: Definitely/Prob-
ably No, Undecided, Definitely/Probably Yes)
q10: the name and functionality are not consistent?
q11: the name does not follow the language naming conventions?
q12: the name does not follow the team naming conventions?
q13: the name contains an abbreviation/acronym?
q14: the name contains a spelling error?
q15: the name contains misleading/hard to understand words?
q16: the name contains a negation (e.g., notOpen)?

q17: Other situations in which you would (or not) rename an entity: (Free-form)

Suppose you would like to rename an entity. Would the following factors impact
your decision whether you perform the identifier renaming: (Single choice, 5-point
Likert scale: Definitely/Probably No, Undecided, Definitely/Probably Yes)
q18: you are not the owner of the code?
q19: the entity being renamed is used in many places in the code?
q20: the entity being renamed is used in other projects?
q21: you are close to a release deadline?
q22: insufficient (or lack of) domain knowledge?

q23: Other factors which you would consider (or not) when you want to rename an
entity: (Free-form)

q24: Any additional comment you would like to share: (Free-form)
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Table C.3 Survey questions—part III.

q25: Do you think that recommending identifier names/renamings (and therefore
suggesting a better name from the beginning or at the time of renaming) is useful?
(Single choice, 4-point Likert scale: Definitely/Probably No, Definitely/Probably
Yes)

q26: Justification/comment on the on recommending identifier naming/renaming:
(Free-form)

With respect to the kind of entity being renamed, is it useful to recommend identifier
names/renamings (and therefore suggesting a better name from the beginning or at
the time of renaming) when they are performed for (Single choice, 5-point Likert
scale: Definitely/Probably No, Undecided, Definitely/Probably Yes)
q27: Class/Interface
q28: Attribute
q29: Constructor
q30: Getter/Setter
q31: Other methods (excl. getters/setters and constructors)
q32: Parameter
q33: Local variable

With respect to renamings where the meaning is preserved, is it useful to recommend
the following types of identifier names/renamings (and therefore suggesting a better
name from the beginning or at the time of renaming): (Single choice, 5-point Likert
scale: Definitely/Probably No, Undecided, Definitely/Probably Yes)
q35: Regarding synonyms
q36: Regarding typos
q37: Regarding the expansion of a word
q38: Regarding the abbreviation of a word

With respect to renamings NOT preserving the meaning, is it useful to recommend
(and therefore suggesting a better name from the beginning or at the time of re-
naming) the following types of identifier names/renamings: (Single choice, 5-point
Likert scale: Definitely/Probably No, Undecided, Definitely/Probably Yes)
q39: regarding words with opposite meaning?
q40: regarding words with unrelated meaning?
q41: regarding more specific name?
q42: regarding more general name?
q43: regarding adding a meaning?
q44: regarding removing a meaning?

q45: Any additional comment you would like to share: (Free-form)
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