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Abstract Developers often use Static Code Analysis Tools (SCAT) to au-
tomatically detect different kinds of quality flaws in their source code. Since
many warnings raised by SCATs may be irrelevant for a project/organization,
it can be possible to leverage information from the project development his-
tory, to automatically configure which warnings a SCAT should raise, and
which not. In this paper, we propose an automated approach (Auto-SCAT)
to leverage (statement-level) code review comments for recommending SCAT
warnings, or warning categories, to be enabled. To this aim, we trace code
review comments onto SCAT warnings by leveraging their descriptions and
messages, as well as review comments made in other different projects. We
apply Auto-SCAT to study how CheckStyle, a well-known SCAT, can be con-
figured in the context of six Java open source projects, all using Gerrit for
handling code reviews. Our results show that, Auto-SCAT is able to classify
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code review comments into CheckStyle checks with a precision of 61% and
a recall of 52%. While considering also the code review comments not re-
lated to CheckStyle warnings Auto-SCAT has a precision and a recall of ≈
75%. Furthermore, Auto-SCAT can configuring CheckStyle with a precision
of 72.7% at checks level and a precision of 96.3% at category level. Finally, our
findings highlight that Auto-SCAT outperforms state-of-art baselines based
on default CheckStyle configurations, or leveraging the history of previously-
removed warnings.

Keywords static analysis tools · code reviews · automated tool configuration

1 Introduction

Static Code Analysis Tools (SCATs) are, for software developers, a precious
complement to more expensive quality assurance techniques, including test-
ing and code inspection (Beller et al., 2016; Vassallo et al., 2018; Zheng
et al., 2006). For instance, SCATs enable the early identification of poten-
tial bugs, security vulnerabilities, performance issues, or deviations from the
project/organization coding guidelines. The latter can be particularly relevant
to enforce consistency. Different developers contributing to a project may have
different programming styles, such as different ways of naming identifiers, using
indentation, using braces, etc. Failing to follow appropriate coding guidelines
may result in a hard to read and to maintain source code (Bacchelli and Bird,
2013; Beller et al., 2014) or the rejection of patches of newcomers contributing
to the project.

However, SCATs feature a large variety and number of checks. For instance,
CheckStyle1 features over 150 checks. Many of such checks could be irrelevant
for a given project or development context (Panichella et al., 2015; Vassallo
et al., 2018), e.g., some coding guidelines may not be in use in a given organi-
zation, meaning that developers handle different warning categories depending
on the specific development context and rely on specific factors when select-
ing warnings to fix (e.g., team policies and composition). As a result, SCAT
could produce a large number of irrelevant warnings (Couto et al., 2013). This
leaves developers with a negative opinion and a general skepticism about the
usefulness of SCAT (Johnson et al., 2013), which emphasizes the necessity to
improve existing strategies for the selection of relevant alarms that are shown
to developers.

Properly configuring a SCAT, i.e., enabling relevant checks is not trivial.
This is especially true when (i) a project has not a shared knowledge of what
flaws should be avoided and what coding guidelines should be followed, (ii)
a novice developer is joining a project/wants to contribute to it, and cannot
get any insight about the code quality checks to be performed, and (iii) there
is need to configure a “centralized” usage of SCATs, e.g., in a Continuous
Integration (CI) pipeline (Duvall et al., 2007; Zampetti et al., 2017).

1 http://checkstyle.sourceforge.net
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In this paper, we propose an approach, tailored to CheckStyle, called Auto-
SCAT (Automated Configurator of Static Code Analysis Tools) which au-
tomatically configures SCATs by leveraging information coming from past
code reviews, thus identifying code review comments pointing to potential vi-
olations to coding standards that a SCAT could detect. We conjecture that,
during a code review task, developers discuss and highlight various quality
issues (Fagan, 1976) relevant to the project. Differently from previous works
inspired by the program history (Williams and Hollingsworth, 2005), previ-
ous warning fixes (Kim and Ernst, 2007), or different kinds of product (code)
and process (changes) metrics (Ruthruff et al., 2008), we suppose that review
comments provide valuable insight and can be used to automatically configure
SCAT. In particular, as reported by Bacchelli and Bird (2013), 30% of code
review comments are about source code improvements. Moreover, recent work
observed that developers exploit SCATs during code review, e.g., Panichella
et al. (2015) found that a significant proportion of warnings highlighted by
SCATs are fixed during code reviews. However, over 80% of the warnings are
generated by only 20% of the checks (Marcilio et al., 2019). For this reason, if
one enables a warning-generating check that is not relevant for a given project
or organization, several false alarms will be triggered. This highlights the im-
portance of configuring SCATs in a way that only relevant checks are included.

Auto-SCAT mines and exploits comments made by developers during code
reviews on specific source code statements (in the following referred to as
“inline comments”), and leverage these comments to enable static analysis
checks. For instance, if previous code reviews mention that Javadoc comments
are required for methods, or source code lines are too long, then Auto-SCAT
automatically enables static analysis checks aimed at detecting these types of
problems. In other words, Auto-SCAT is able to configure a SCAT if previous
code reviews mention related issues that are considered as relevant for the
project. To facilitate the mapping of code reviews comments onto checks, Auto-
SCAT leverages a knowledge base consisting of SCAT checks along with their
descriptions, and a set of comments coming from other projects and mapped
onto such checks. Given the diversity of code review comments, this knowledge
base facilitates Auto-SCAT to trace code review comments onto checks.

To evaluate Auto-SCAT, we automatically configure CheckStyle, a widely
used SCAT for Java (particularly suited to enforce coding guidelines), for six
Java open source projects by leveraging their code reviews performed using
the Gerrit2 code reviewing environment. More specifically, we investigate (i)
to what extent the code review inline comments on which CheckStyle raises
a warning, are related to coding guidelines violations; (ii) the performance of
Auto-SCAT to provide an accurate and complete configuration of CheckStyle’s
checks; and (iii) how Auto-SCAT compares with different baselines, including
default CheckStyle configurations, and configurations based on the CheckStyle
execution on the previous project’s history.

2 https://www.gerritcodereview.com
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Our results show that Auto-SCAT infers appropriate checks with an overall
precision of 75.1% and an overall recall of 74.6%. Moreover, when looking at
the accuracy in configuring CheckStyle, the precision of Auto-SCAT is equal to
72.7% when enabling specific checks, while reaches 96.3% when enabling cat-
egories. Finally, Auto-SCAT outperforms baselines using default CheckStyle
configuration and historical data.

The contributions of this work can be summarized as follows:

– We devise Auto-SCAT, a novel approach that leverages code review com-
ments to configure SCATs.

– We provide an oracle of manually-mapped code review comments onto
CheckStyle warnings that the comment pertains to, useful for replications’
purposes (Zampetti et al., 2020).

The paper is structured as follows. Section 2 discusses the related literature
concerning code reviews and Static Code Analysis Tools. Section 3 describes
how Auto-SCAT works, while Section 4 reports the empirical study we con-
ducted. Results are presented and discussed in Section 5, whereas the study
threats are detailed in Section 6. Finally, Section 7 concludes the paper and
outlines directions for future work.

2 Related work

This section discusses relevant literature concerning (i) code reviews, (ii) static
code analysis tools, and (iii) SCAT warnings prioritization.

2.1 Code Reviews

Previous literature has investigated Modern Code Review (MCR) practices.
Some of them examine which factors affect the code review response time
and outcome (Baysal et al., 2013; Bosu, 2014; Weißgerber et al., 2008). For
instance, Bosu (2014) found that changes submitted by core members have
higher chances of being accepted very fast. Other studies have highlighted
that MCR can be used for sharing and transferring knowledge mainly for ed-
ucating newcomers or building a strong community (Bacchelli and Bird, 2013;
Beller et al., 2014; Bosu et al., 2017; Rigby et al., 2008). From a different
perspective, Kononenko et al. (2016) analyzed the code review quality per-
ception of developers, highlighting that the review quality is mainly impacted
by the feedback provided during the code review process. Finally, some works
investigated the impact of MCR on the overall software quality in terms of
the likelihood of introducing bugs (Bavota and Russo, 2015; McIntosh et al.,
2016) and anti-patterns (Morales et al., 2015). Finally, recent work by Pas-
carella et al. (2018) empirically studied the information needs in MCR such
as knowing the uses of methods and variables declared/modified in the code
under review.
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Differently from the studies reported above, our work leverages the code
review inline comments linked to SCAT checks to verify whether they contain
enough information for automatically configure SCATs in a way that only
relevant/actionable warnings are displayed to developers.

From a different perspective, researchers have also looked at how code re-
view was used to identify defects in source code. In particular, Mäntylä and
Lassenius (2009) studied what kinds of defects are found in code reviews of
9 industrial and 23 student projects. They found that the majority of defects
(71%) are evolvability problems, while only 21% of defects found in code re-
views are functional ones. A follow-up study was conducted by Beller et al.
(2014), to look at the kind of code review problems being fixed. Their study
confirmed results of Mäntylä et al., with a 75:25 ratio between evolvability and
functional problems. Our work focuses on evolvability problems, e.g., those
Mäntylä et al. call textual representation (i.e., naming and comments), vi-
sual representation (e.g., indentations and bracket usage), and distribution of
organization (e.g., long, complex, or dead code) defects.

Summarizing, the aforementioned corpus of research contributed to achieve
a better understanding of what are the goals achieved by developers during
code reviews. Auto-SCAT does not explicitly cope with issues related to po-
tential bugs, and not even to the presence of code smells/needs for refactor-
ing. Instead, by recommending the activation of CheckStyle issues, our work
contributes to help code reviewers to achieve a more consistent adherence to
coding styles.

2.2 Static Code Analysis Tools

Previous literature has investigated the extent to which and how developers
use SCATs during software development (Vassallo et al., 2018). Specifically,
Johnson et al. (2013) analyzed the reasons why developers do (not) use SCATs,
identifying that false alarms, the large volumes of warnings and the inadequate
understandability of the output generated by SCATs are responsible for their
under-usage. Spacco et al. (2006), instead, identified a relationship between the
warnings removal and their priority (i.e., developers do not remove warnings
with low priority). While looking at the relation between fault occurrence and
SCAT warnings, Couto et al. (2013) found that there is no static relationship.
The latter is partially contradicted by Zheng et al. (2006) who found that
SCATs play a significant role in identifying security vulnerabilities. Finally,
Querel and Rigby (2018) combined static code analysis and statistical bug
models to identify when risky commits introduce warnings. Their approach,
i.e., warningsguru, reduces the overall number of commits and warnings
developers have to examine to identify bugs.

A recent work by Beller et al. (2016) analyzed the usage of SCATs in open
source, showing that their adoption is not widespread, but also that only in
' 5% of the cases their configurations do not correspond to the ones provided
by default. Zampetti et al. (2017), instead, studied the usage of SCATs in Con-
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tinuous Integration, highlighting that build breakages (i) are mainly related to
adherence to coding standards, and (ii) are quickly fixed by actually solving
the problem, rather than by disabling the warning. Finally, Panichella et al.
(2015) studied the usage of SCATs in MCR processes, finding that during code
review the removal of some warnings is very high, i.e., from 50% up to 100%.
Their results point out the possibility to use the source code change history
for configuring SCATs.

Summarizing, previous work has shown how developers use different types
of SCATs, including tools for code style checks, e.g., CheckStyle. Moreover, as
reported by Zampetti et al. (2017), such tools are even used to make a build
fail. Therefore, a proper configuration, reflecting the organization/project cod-
ing standards is desirable, instead of simply activating all possible checks from
the default tool’s configuration.

2.3 Approaches for SCATs Warnings Prioritization

Previous literature has identified approaches aimed at prioritizing and classify-
ing warnings generated by SCATs to deal with the challenge of too many false
alarms and non-actionable warnings. Williams and Hollingsworth (2005) im-
plemented an approach that searches for a commonly fixed bug and refines its
results through historical information. Kim and Ernst (2007), instead, defined
a history-based warning prioritization algorithm by mining warning fix expe-
rience recorded in the software change history, improving warning precision
up to 67%. Finally, Ruthruff et al. (2008) identified 33 factors (most of them
relying on the change history of the project) that may relate to actionable
warnings, and used logistic regression and screening methodology to identify
actionable warnings. Their approach predicts false positive warnings over 85%
of the time and actionable warnings over 70% of the time. However, a short-
coming of using historical information is that some warnings can disappear as
a consequence of source code being deleted or moved to a different location.
For this reason, the usage of historical information can lead to imprecision if
used for configuring SCATs.

Differently, our approach looks at inline comments posted by developers
during code reviews highlighting possible violations to coding standards and
guidelines, without accounting for whether developers change the code to ad-
dress the warnings. Hence, our approach does not look at removed warnings,
while it enables checks for warnings felt as relevant by developers.

Machine learning algorithms have been used to minimize displayed non-
actionable warnings (Hanam et al., 2014; Reiss, 2007; Yoon et al., 2014; Yüksel
and Sözer, 2013). For instance, Yoon et al. (2014) used Support Vector Ma-
chine (SVM) with ' 87% of accuracy, while Hanam et al. (2014) used alert
characteristics along with an a priori knowledge about which code patterns
are actionable, for ranking alerts according to the likelihood that they are ac-
tionable. Moreover, a recent study by Ribeiro et al. (2019), investigated the
possibility of combining the reports generated by different SCATs to identify
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the issues least likely to be false positives. Specifically, they constructed a clas-
sifier to rank static analyzer alarms based on the probability of a given alarm
being an actual bug in the code.

Complementary to prioritization algorithms, there are also approaches that
cluster similar/related warnings (Fry and Weimer, 2013; D. Zhang and Zhang,
2013; Muske et al., 2013) to enable developers skipping all warnings in a cluster
if they think that it does not contain relevant warnings. Finally, there are
works aimed at modifying the user interface for assisting developers in finding
actionable warnings among the ones raised by SCATs (Anderson et al., 2003;
Ayewah and Pugh, 2009; Khoo et al., 2008; P. Cousot et al., 2005; Phang
et al., 2009).

The aforementioned approaches help developers in identifying what are the
warnings to consider. Our perspective is different since we want to learn SCAT
configurations, avoiding to generate irrelevant output for developers even be-
fore the SCAT is being used/adopted. A more important difference is in the
kind of tool the different approaches are able to prioritize. Existing approaches
prioritize bug finding tools based on their capability to find bugs that have
been previously fixed. However, this approach cannot work for style check-
ing tools such as CheckStyle. This is because, during software development,
code style issues are addressed without explicitly opening issues. Instead, those
are problems typically highlighted and addressed during code reviews. This is
why our work leverages code review comments to decide upon the activation
of CheckStyle checks.

3 Auto-SCAT Usage Scenario and Approach Description

In the following, we start describing the scenario in which Auto-SCAT can
support developers, and then we describe the Auto-SCAT approach.

3.1 Auto-SCAT Usage Scenario

The typical usage scenario of Auto-SCAT reflects a scenario described in the
Duvall et al. (2007) book on continuous integration (Chapter 3, page 58, sce-
nario ”Coding Standard Adherence”). The scenario describes what happens
when a new developer joins a project, but s/he is not suitably following coding
guidelines. To this extent, providing developers with written guidelines (as-
suming these are available) does not work because developers may not bother
to read them. Therefore, Duvall et al. suggest integrating static analysis tools
in the continuous integration pipeline to generate a build failure every time
source code not meeting coding style guidelines is submitted. Such build fail-
ures warn developers on the need to fix those violations as soon as possible,
and represent valuable support for the code reviewing activity (Cassee et al.,
2020).

In this context, how can projects leverage Auto-SCAT? Let us consider
that no formalized guidelines for code style exist in a project, while developers
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Fig. 1 Overview of Auto-SCAT.

have previously performed code reviews, pointing out code style issues. Auto-
SCAT learns from code reviews, and automatically configures static analysis
tools (CheckStyle in the current implementation) enabling checks relevant for
the project.

3.2 Auto-SCAT Approach Overview

In the following, we describe how Auto-SCAT automatically generates config-
urations for CheckStyle. However, it is possible to apply the same approach
to other SCATs and to comments from other code review infrastructures.

Fig. 1 provides an overview of the approach. As mentioned in the intro-
duction, Auto-SCAT leverages (i) a knowledge base, made up of CheckStyle
checks, along with their descriptions, and code review comments (from several
projects different from the one to configure) manually mapped onto checks;
and (ii) past code reviews of the project on which we apply Auto-SCAT.

To create a CheckStyle configuration for an unseen project, Auto-SCAT
uses code reviews comments of the new project by computing the textual
similarity of each new comment with comments stored in the knowledge base;
if the similarity is above an activation threshold, the corresponding check is
flagged as relevant and activated in the CheckStyle configuration. Note that,
if the similarity threshold is the same for multiple checks, they all get enabled.
Since CheckStyle groups checks into categories dealing with specific issues,
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e.g., naming of identifiers, Javadoc comments, or indentation, it is possible
to have similar code review comments belonging to different checks in the
same category. For this reason, Auto-SCAT generates configurations at two
levels of granularity, at check-level (i.e., each check is enabled or disabled
separately) and category-level (i.e., the configuration enables or disables the
whole category).

The accuracy and completeness of the Auto-SCAT recommendations de-
pend on (i) the code review comments in the knowledge base, and (ii) the
availability of code review comments for the project to configure. The for-
mer aids to map diverse code review comments related to specific issues, e.g.,
different reviewers may provide comments with different wording to report a
problem such as the need for improving identifier naming or splitting a long
line. The latter, instead, is a necessary precondition for the applicability of
Auto-SCAT. Indeed, a check is enabled only if a related issue has been previ-
ously mentioned in the projects’ code reviews.

Depending on the role and the development context of the SCAT, one may
opt for favoring precision over recall. Obviously, for SCATs identifying likely
defects, it might be useful to favor recall over precision, although previous re-
search has warned about the limited adoption of SCATs due to low precision
(Johnson et al., 2013; Wedyan et al., 2009). At the same time, for tools enforc-
ing coding style guidelines, such as CheckStyle, a high number of irrelevant
warnings may discourage developers in fixing them. Therefore, maximizing re-
call while sacrificing too much precision may not be the best option. Thus, in
our work, we decided to address the problem of having a low precision assum-
ing that, in the case of CheckStyle alarms, developers are highly interested in
having a high precision in the recommendations.

In the following subsections we provide details on how (i) comments are
preprocessed, (ii) the knowledge base is created, and (iii) the activation thresh-
old is selected.

3.2.1 Code review preprocessing and representation

To create an automated classification for the SCAT (CheckStyle in our case),
we start by preprocessing code review comments extracted from Gerrit, using
a typical Information Retrieval (IR) normalization process (Baeza-Yates and
Ribeiro-Neto, 1999).

We preprocess comments by removing special characters, splitting com-
pound words (identifiers) using the camel case heuristic, and applying stop-
words removal and stemming. We have explored three stop-words configura-
tions: retaining stop-words, removing stop-words, and retaining stop-words
only if they appear in the name of a CheckStyle warning (e.g., we retain
“after” since it appears in the “WhiteSpaceAfter” check). The latter is the
one used by Auto-SCAT. As for stemming, Auto-SCAT uses the Porter stem-
mer (Porter, 1980). As last step, comments are mapped into a Vector Space
Model (VSM) (Salton et al., 1975) using the tf-idf weighting scheme (Baeza-
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Fig. 2 Example of inline code review mapped onto a CheckStyle check.

Yates and Ribeiro-Neto, 1999) by using the Gensim (Řeh̊uřek and Sojka, 2010)
library.

3.2.2 Auto-SCAT Knowledge base definition

Auto-SCAT requires a knowledge base, i.e., a set of code review comments
manually traced onto CheckStyle checks.

Fig. 2 shows a code review inline comment3 from the Couchbase project,
which is mapped onto the EmptyLineSeparator check. In the bottom, we
report the check description as extracted from the CheckStyle user manual4.

In principle, one may wonder why we require a knowledge base, and why
we do not just textually compare the code review comments of the project to be
configured with CheckStyle check description. More in detail, the code review
comments should be (textually) related to such descriptions, and this would
have permitted an unsupervised configuration approach. We explored such a
possibility on the same dataset used in our empirical evaluation obtaining a
very low precision (' 26%). This suggests that the way code quality issues
are pointed out in code reviews is different from the way CheckStyle describes
checks about the same code quality issues. For such a reason, we move towards
the idea of building a check description corpus with code reviews of other
projects, as detailed in the following.

To create the knowledge base, we first download a set of code reviews,
using the Gerrit’s API. After that, we store the inline code review comments
and the line number in the source file where the code review comment is. As
it would not be feasible to manually classify a large set of inline comments,
we use CheckStyle to select only those lines that 1) have one (or more) review
associated comment(s); and 2) cause CheckStyle to raise a warning. Since the
goal of running CheckStyle is to identify all warnings that may relate to a

3 http://review.couchbase.org/#/c/21805/ line 241, author’s hidden for privacy reasons.
4 http://checkstyle.sourceforge.net/checks.html
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code review comment, we configure CheckStyle so that it does not miss any
warning. Specifically, we include all checks in our configuration except those
requiring project-specific configuration parameter (e.g., “Regexp” — a check
to detect strings in source code matching a regular expression). For checks
requiring a parameter (e.g., the maximum number of parameters allowed for
each method declaration belonging to the ParameterNumber check), we set
low thresholds so that we do not miss potentially relevant warnings.

CheckStyle warnings raised in one line may not be related to a code re-
view comment made on the same line. Thus, we created a sample of inline
comments posted on source code lines where CheckStyle raises a warning and
manually validate them, flagging as relevant and adding to the knowledge
base only those comments discussing quality issues identifiable by CheckStyle.
However, during our manual validation, we have encountered many comments
that were simply reporting misbehavior that had nothing to do with the checks
identifiable by CheckStyle. As an example, the comment: “I’m not sure what
semantic impact this would have. The modification simply checks before cast-
ing which should be always be done prior casting. You[r] suggestion would
mean to not perform any code in such a case which not necessarily needs to
be correct” in EclipsePlatformUI highlights the presence of behavior that
deviates from the expected one. Other cases, instead, were too much general
like “Accepted second proposal” in EclipsePlatformUI or “I’m not entirely
convinced but made the change. Probably something that should be discussed
further” in Vaadin. Finally, we also found comments that were pointing out
the presence of code smells that cannot be detected by CheckStyle. For in-
stance, in Vaadin we found a comment stating: “seems redundant”, and a
different comment reporting: “should perhaps extract and rename the inter-
face from ShortcutActionHandler as no longer specific to it”. All the inline
code review comments above have been assigned to a category (i.e., “Not re-
lated to CheckStyle”) mainly aimed at grouping comments which body is not
related to any CheckStyle checks/categories.

Just relying on a set of manually-classified comments is not always a viable
solution due to the varying distribution of the number of code review comments
mapped to CheckStyle checks, which can be in some cases very low. To cope
with this problem, we create three configurations of the knowledge base, and
investigate which one leads to the best performance:

1. Comments only: the knowledge base only contains code review comments
that highlight quality issues detectable by CheckStyle;

2. Comments + descriptions: the same as the previous point augmented
with the check description from the CheckStyle documentation. If no code
review comments are belonging to a check, then the check is not included
in the knowledge base;

3. Comments + descriptions, or just descriptions: similar to (2), how-
ever if there are no comments for a check, then the check is simply repre-
sented by its description.
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3.2.3 Check activation threshold

Auto-SCAT uses textual similarity and an activation threshold to determine
whether to activate a check for a new project. The rationale is that, if a re-
viewer has made a comment similar to a check (or similar to a comment traced
to a check in the knowledge base) then the check needs to be enabled. To this
aim, we applied the preprocessing step and VSM, thus computing the cosine
similarity (Huang, 2008) between each review comment of the new project and
the textual corpus that represents the check. Specifically, a VSM represents
documents as vectors in a multi-dimensional space in which each column is a
document and each raw is the relevance of a word in each document. In this
representation, words are then providing orthogonal information, i.e., each
word is associated to a specific dimension.

Auto-SCAT calibrates the thresholds on the projects on which the knowl-
edge base has been built, i.e., a set of projects different from the one where
Auto-SCAT configures CheckStyle (as detailed in Section 4.2).

4 Study Design

The goal of the study is to investigate the degree to which code review com-
ments can be used to automatically configure SCATs. The quality focus is
the Auto-SCAT accuracy in generating a SCAT configuration, as compared
to baselines leveraging default SCAT configurations or the SCAT execution
over the past project’s history. The perspective is of researchers and develop-
ers, who are interested in reducing the number of irrelevant SCAT warnings
to deal with. The context consists of code review comments from six open-
source Java projects, all using Gerrit as a code review tool, and CheckStyle
as a SCAT to be configured. Specifically, the study aims at addressing the
following research questions:

RQ1: To what extent code review comments occurring on lines where Check-
Style fails are related to quality issues that can be detected by that tool?
Why : First of all, we need to analyze the extent to which code review
comments contain information relevant to our purpose, i.e., whether the
reviews discuss issues that CheckStyle detects.
How : We analyze code review comments where CheckStyle raises warn-
ings. Specifically, we manually verify whether the comments pertain to the
warnings raised by CheckStyle. This lets us evaluating the percentage of
code review comments that can be used to configure CheckStyle.

RQ2: How accurate is Auto-SCAT?
This research question aims at assessing the performance of Auto-SCAT,
and is divided into two sub research questions, i.e., RQ2.1: How accurate
is Auto-SCAT to classify code review comments into CheckStyle checks?,
and RQ2.2: How accurate is Auto-SCAT to configure CheckStyle?
Why : Once we know that code review comments can be used to configure
CheckStyle, we want to evaluate how accurately Auto-SCAT maps inline
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comments to checks (RQ2.1) and how accurately it configures CheckStyle,
by enabling or disabling checks (RQ2.2).
How : To address RQ2.1, we evaluate the Auto-SCAT capability to correctly
classify code review comments at both check and category level. We assume
that, if Auto-SCAT can correctly link a code review comment to a check
(or a category), then we can use this information to enable the check (or
the whole category). The rationale of computing the accuracy at category
level is that if for a project some relevant checks belonging to a category
are specified (e.g., naming conventions), it makes sense to enable the whole
category even if there is no specific comment (yet) on the individual checks
of that category. To address RQ2.2, instead, we evaluate the Auto-SCAT
capability to correctly enable or disable CheckStyle checks. In this case we
put ourselves in the perspective of a developers that wants to use Auto-
SCAT to configure CheckStyle.
While looking at the performance of Auto-SCAT, it is important to high-
light that we aim at increasing the usefulness of static code analysis tools
(SCATs) by reducing the number of irrelevant warnings reported to de-
velopers. Our objective is guided by previous work indicating that, while
SCATs have the potential to identify the presence of likely defects or vul-
nerabilities, they also produce a high number of false positives (Wedyan
et al., 2009). However, the great number of irrelevant warnings that SCATs
produce may hinder their adoption in the software development process
(Beller et al., 2016; Johnson et al., 2013; Zampetti et al., 2017), as well as
in all development contexts such as continuous integration, code review,
and local programming (Vassallo et al., 2018).

RQ3: How accurate is Auto-SCAT compared to a baseline?
Why : It is important to verify whether Auto-SCAT outperforms a baseline
approach.
How : Using as a ground-truth projects’ coding standard guidelines, we
compare the Auto-SCAT configuration with that of a default configura-
tion and with a configuration based on historical information. As regards
the former, our choice is motivated by a previous work by Beller et al.
(2016) highlighting how open source projects tend to rely on the default
configuration of SCATs rarely adding customized checks. Moreover, they
also found that the configurations once added, are only rarely modified
mainly within the first week of their appearance. For the historical-based
configuration, instead, we execute CheckStyle (by enabling all checks) on
previous versions of the project, and determine which warnings have been
removed at least once through changes committed by developers.

4.1 Object systems

Table 1 summarizes relevant information for the six projects considered in our
study. For each project we report (i) the time interval within which we ex-
tracted the code review comments, (ii) the total number of inline code review
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Table 1 Studied Dataset (TC =Number of inline code review comments, CW Pairs = Num-
ber of comments on lines where CheckStyle raises a warning, SC = Sampled comments for
manual validation, TP = Number of comments in the sample that are linked to a CheckStyle
check).

Project Time Frame TC CW Pairs SC TP
Couchbase Jan,2012-Dec,2016 753 397 19 10
Eclipse CDT Apr,2012-Nov,2015 4,855 1,730 423 167
Eclipse JDTCore Dec,2014-Nov,2016 119 55 5 5
Eclipse Platform UI Aug,2014-Mar,2017 3,407 838 360 107
OpenDaylight Controller Jul,2013-May,2017 7,975 2,374 573 292
Vaadin Nov,2012-Aug,2016 14,485 2,595 492 169
Total 31,594 7,989 1,872 750 (40.0%)

comments, (iii) the number of comment-warnings pairs, i.e., the number of
inline code review comments left on source code lines where CheckStyle raises
a warning, (iv) the total number of pairs used for our manual validation, and
finally (v) among the manually-validated pairs, the number of cases where
the comment body describes code quality issues identifiable by CheckStyle.
All the studied projects have been used in previous work analyzing the use
of SCATs in code reviews (Panichella et al., 2015). The dataset described in
Table 1 has been used to address the three research questions defined above.
However, RQ3 is addressed using, as a test set, data from a different project,
i.e., Mylyn5. For the definition of the ground truth, we manually analyze My-
lyn’s coding guidelines6 to determine the categories of checks that are relevant
to the project.

4.2 Evaluation Methodology and Metrics

To verify whether Checkstyle warnings correspond to issues discussed in code
review comments (RQ1), we investigate the proportion of comments related
to issues that are detected by CheckStyle. To this end, we run CheckStyle on
the source files where code review comments exist and we manually validate
a significant stratified random sample (fifth column in Table 1) of the whole
set of code review comments made at a line where a CheckStyle warning is
raised. All the comments that are not related to CheckStyle warnings have
been labeled as “not related”. The manual validation has been performed by
two independent annotators, and in case of disagreement, a third person helped
to solve the conflict.

To address RQ2.1, we evaluate the Auto-SCAT capability in correctly
and completely associating code review comments of a project onto Check-
Style checks, by performing a cross-validation analysis across the six selected
projects: we built the knowledge base on five projects and computed the per-
formance metrics on the one left-out.

5 https://www.eclipse.org/mylyn/
6 https://wiki.eclipse.org/Development Conventions and Guidelines
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Before doing this, we needed to calibrate the similarity thresholds on the
projects on which the knowledge base has been built. More specifically, given
N projects:

– First of all, one project is removed from the corpus. The knowledge base
will contain data coming from N-1 projects, while the remaining (withheld)
project plays the role of the unseen project. However, the code review
comments from the withheld project play the role of ground truth.

– After that, Auto-SCAT computes the all-by-all cosine similarity between
the review comments of the withheld project and the CheckStyle relevant
comments in the reduced knowledge base. It is important to remark that
for the given projects (i) relevant comments in the corpus are mapped onto
checks – ground truth and (ii) it is possible to also access the code review
comments not related to CheckStyle.

– Subsequently, Auto-SCAT varies the activation threshold between zero and
one at step of 0.1 and, for each threshold, computes the precision and recall.
Specifically, the precision is computed cumulatively without distinguishing
among single checks. As a result, it is possible to generate a withheld
project precision curve as a function of the threshold.

– Finally, we select the threshold that achieves a good compromise between
precision and recall.

The type of classification we perform is a single-label multi-class classifi-
cation. When performing the classification at check-level, a class is a check,
while at category-level, a class is a category. We measure Auto-SCAT perfor-
mance using precision and recall (Sokolova and Guy, 2009), computed over
the classifications produced by our classifier for every single class. After that,
the precision and recall of the multi-class classifier are computed by averaging
the respective metrics for each class to get a better overview of the results.
Specifically, we calculate micro- and macro-averaged metrics (Yang, 1999) by
using the following equations:

Mmicro = M(

n∑
i=1

TPi,

n∑
i=1

FPi,

n∑
i=1

FNi,

n∑
i=1

TNi)

Mmacro =
1

n

n∑
i=1

M(TPi, FPi, FNi, TNi)

where n is the number of classes and M is the evaluation metric. Following
those formulas, precision, for example, is calculated as follows:

Pmicro =

∑n
i=1 TPi∑n

i=1(TPi + FPi)

Pmacro =
1

n

n∑
i=1

TPi

TPi + FPi

Simply put, macro-averaged metrics are the arithmetic means over the per-
class scores. Thus, macro-averaging the results gives equal weight to each class.
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To calculate micro-averaged metrics, we simply look at all instances and ignore
the class they belong to, i.e., we create a global contingency table. Thus,
micro-averaging the results gives equal weight to each classified instance. Both
measures are important as they provide different insights. In particular, in the
presence of imbalanced classes, micro-averaging the results will highlight the
effectiveness of a classifier on the large classes. This will give us an idea of how
our approach will perform in a real situation as in reality, the prevalence of
different classes is imbalanced. However, macro-averaged results allow us to get
a better sense of the effectiveness of the approach on small classes (Manning
et al., 2008).

When micro-averaging the performance metrics of a multi-class classifier,
the precision and recall are always equal. This is due to the way the average of
the performance metrics is computed. Let us suppose that an instance of Ci

is misclassified as Cj , i.e., a code review comment that pertains to check Ci

is classified into check Cj . This misclassification is a false positive (FP) for Cj

and a false negative (FN) for Ci. In other words, each FN concerning Ci is a FP
for a class in C−Ci. As a consequence,

∑n
i=1 FPi =

∑n
i=1 FNi, meaning that

the micro-averaged precision and recall are equal. Moreover, we evaluate the
performance, i.e., precision and recall, of Auto-SCAT by comparing the checks
(categories) that it enables against the checks (categories) that we expect it
to enable from the manually validated code review comments.

Finally, it is important to remark that in this context, we evaluate Auto-
SCAT considering three different types of the knowledge base, i.e., (i) Com-
ments only, (ii) Comments + description, and (iii) Comments + description,
or just description, finding that the second provides better performance in
terms of precision and recall. So the results we provide are related to the us-
age of Auto-SCAT having a knowledge base that for each check having at
least a code review comment, in the projects from which Auto-SCAT is able
to learn, contains the code review comments and the description of the check
as reported in the CheckStyle documentation.

To address RQ2.2, instead of evaluating the extent to which a code review
comment is correctly classified, we evaluate the extent to which a CheckStyle
check is correctly enabled or disabled. Therefore, if there is at least one com-
ment activating a check, we consider that check as enabled. As evaluation
metrics, we use the same metrics used for RQ2.1.

To address RQ3, we evaluate the Auto-SCAT capability to configure a
project (i.e., Mylyn) which data is “unseen” in the cross-validation reported
in RQ2. As explained in Section 4.1, we manually defined the ground-truth for
the Mylyn CheckStyle configuration by inspecting the Mylyn documentation
and coding guidelines. The goal of our manual validation is to determine a
set of checks/categories that need to be enabled in order to follow Mylyn’s
guidelines. This allowed us to produce a CheckStyle configuration that meets
the coding guidelines of the subject project. Subsequently, we use the above
configuration to determine how good Auto-SCAT is in determining a Check-
Style configuration in two different scenarios, i.e., (i) as done in RQ2, i.e.,
by leveraging the content of code review comments belonging to the project,
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or (ii) by directly computing the similarity between those guidelines and the
CheckStyle check description, i.e., using guidelines as they were code review
comments. The rationale of the latter is to show how Auto-SCAT could be
used by leveraging a different source than code review comments, i.e., coding
standard guidelines.

More specifically, we compare Auto-SCAT with: (i) two popular default
configurations, namely the Sun7 and Google8 default CheckStyle configura-
tions and (ii) a historical approach that generates a configuration based on
warnings resolved during the code review process. For the historical approach,
we compare a patch on which a code review comment is made with the final
patch. More specifically, we run CheckStyle on the project commit history,
and determine which warnings have been removed over changes at least once.
We chose to compare patches with comments as opposed to only the initial
patch to take into account any intermediate patches for which quality issues
are resolved. For each baseline, we report precision and recall. It is important
to point out that the historical approach is different from comparing the Auto-
SCAT results with a ground-truth. This is because, with respect to the past,
unseen violations types in the source code (and new discussions about checks
in the code review) could appear.

5 Results

This section reports and discusses the results answering our three research
questions.

5.1 RQ1: To what extent code review comments occurring on lines where
CheckStyle fails are related to quality issues that can be detected by that tool?

As shown in the last column of Table 1, about 40% of the code review com-
ments made on source code lines where CheckStyle raises a warning in our
sample pertain to code quality issues that can be detected by CheckStyle.
A recent work by Panichella and Zaugg (2020) have proposed a more recent
taxonomy of code review changes highlighting how the availability of new
emerging development technologies (e.g., cloud-based technologies) and prac-
tices (e.g., Continuous Delivery) has pushed developers to perform additional
activities during modern code review (MCR) and that additional types of feed-
back are expected by reviewers. Also in the context of this work, code review
comments dealing with code improvement and understanding aspects are rel-
evant and frequently addressed by developers, which confirm the relevance of
CheckStyle checks.

Moreover, while looking deeper into code review comments not related to
CheckStyle checks/categories we found many cases highlighting the need for

7 https://checkstyle.sourceforge.io/sun_style.html
8 https://checkstyle.sourceforge.io/google_style.html
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refactoring actions, e.g., “This refactoring makes sense but doesn’t belong as
part of this change which is purely about adding generics. We can clean that
up in another change.” in Eclipse Platform UI, as well as cases describing
a bug that has to be fixed, like “All these things could be a problem if we
launch two launches exactly at the same time. Maybe using a LaunchGroup
we could trigger a bug. I’ll open a bug about this.” in Eclipse CDT. Our
manual investigation also identified cases where the comments are used for
better understanding the behaviour of a piece of code, e.g., “What is the
reason that closeNow() doesn’t set justClosed and schedule the timer to reset
this?” in Vaadin or cases aimed at verifying the external impact like “What’s
the performance impact of this hack? Vaadin” in Vaadin.

Moreover, out of 154 CheckStyle checks (available in the current version),
we found a mapping for 70 of them. Such checks (detailed in Table 2) belong to
12 categories, out of the 14 available categories. The only categories for which
we did not find a mapping were Metrics (i.e., in the investigated projects devel-
opers did not discuss of high cyclomatic complexity, coupling, etc.), and Reg-
exp, i.e., customized checks created through regular expressions. The checks
that are discussed the most in the studied projects are JavadocMethod and
JavadocType, i.e., those related to the presence of a proper Javadoc documen-
tation for methods and classes/interfaces. Noticeably, JavadocMethod is dis-
cussed in all the studied projects. Other warnings mostly related to formatting
(e.g., NoLineWrap and NeedBraces) but also to information hiding (i.e., Visi-
bilityModifier) are the next most frequently discussed ones. Finally, the less dis-
cussed quality issues are mainly related to naming improvement (e.g., Abbrevi-
ationAsWordInName, LocalVariableName, and MethodName) and decreasing
complexity (e.g., NestedIfDepth, DesignForExtension, SimplifyBooleanExpres-
sion, and MagicNumber).

RQ1 summary: 40% of the code review comments left on source code
lines where CheckStyle raises a warning in our sample, have a body describing
and/or pointing out a code quality issues identifiable by code styling tools
(i.e., CheckStyle), and are related to a broad variety (45%) of CheckStyle
checks, i.e., 12 out of 14 categories. This suggests that, in principle, code
reviews comments could be exploited to automatically configure SCAT (i.e.,
CheckStyle).

Table 2: Auto-SCAT Precision and Recall in code review comments
classification

CheckStyle check/category TP FP FN Pr(%) Rc(%)
Annotations 0 0 3 0.0 0.0
AnnotationLocation 0 0 1 0.0 0.0
SuppressWarnings 0 0 2 0.0 0.0

Block Checks 17 19 32 47.2 34.7
AvoidNestedBlocks 0 1 2 0.0 0.0
EmptyBlock 0 6 2 0.0 0.0

Continued on next page
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Table 2 – Continued from previous page
CheckStyle check/category TP FP FN Pr(%) Rc(%)
EmptyCatchBlock 0 1 1 0.0 0.0
LeftCurly 5 8 2 38.5 71.4
NeedBraces 12 1 23 92.3 34.3
RightCurly 0 2 2 0.0 0.0

Class Design 13 20 13 39.4 50.0
DesignForExtension 0 1 4 0.0 0.0
FinalClass 12 15 4 44.4 75.0
HideUtilityClassConstructor 0 3 5 0.0 0.0
InnerTypeLast 1 1 0 50.0 100.0

Coding 31 20 46 60.8 40.3
AvoidInlineConditionals 0 4 1 0.0 0.0
DeclarationOrder 0 0 2 0.0 0.0
ExplicitInitialization 4 3 4 57.1 14.3
FinalLocalVariable 1 2 6 33.3 62.5
IllegalCatch 10 3 6 76.9 25.0
MagicNumber 4 1 12 80.0 25.0
MissingCtor 1 1 3 50.0 25.0
MultipleStringLiterals 3 1 4 75.0 42.9
NestedIfDepth 1 0 1 100.0 50.0
OneStatementPerLine 0 1 1 0.0 0.0
SimplifyBooleanExpression 1 2 0 33.3 100.0
UnnecessaryParentheses 5 2 0 71.4 100.0

Headers 21 3 5 87.5 80.8
Header 21 3 5 87.5 80.8

Imports 5 19 13 20.8 27.8
AvoidStarImport 0 2 5 0.0 0.0
AvoidStaticImport 1 7 0 12.5 100.0
ImportOrder 0 2 5 0.0 0.0
RedundantImport 0 3 1 0.0 0.0
UnusedImports 4 5 2 44.4 66.7

Javadoc Comments 91 39 100 70.0 47.6
JavadocMethod 67 23 44 74.4 60.4
JavadocParagraph 0 1 1 0.0 0.0
JavadocStyle 2 2 4 50.0 33.3
JavadocTagContinuation 0 4 2 0.0 0.0
JavadocType 22 4 38 84.6 36.7
JavadocVariable 0 2 10 0.0 0.0
NonEmptyAtclauseDescription 0 3 1 0.0 0.0

Miscellaneous 49 11 15 81.7 76.6
CommentsIndentation 0 0 1 0.0 0.0
FinalParameters 1 1 2 50.0 33.3
Indentation 19 3 3 86.4 86.4

Continued on next page
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Table 2 – Continued from previous page
CheckStyle check/category TP FP FN Pr(%) Rc(%)
TodoComment 29 1 2 96.7 93.5
TrailingComment 0 6 7 0.0 0.0

Modifiers 39 11 19 78.0 67.2
ModifierOrder 2 0 7 100.0 22.2
RedundantModifier 4 3 4 57.1 50.0
VisibilityModifier 33 8 8 80.5 80.5

Naming Conventions 12 32 55 27.3 17.9
AbbreviationAsWordInName 4 0 2 100.0 66.7
AbstractClassName 1 5 0 16.7 100.0
ConstantName 4 5 2 44.4 66.7
LacalVariableName 0 7 17 0.0 0.0
MemberName 0 1 7 0.0 0.0
MethodName 2 5 18 28.6 10.0
ParameterName 0 4 4 0.0 0.0
TypeName 1 5 5 16.7 16.7

Size Violations 14 1 9 56.0 60.9
AnonInnerLength 0 1 1 0.0 0.0
LineLength 14 9 7 60.9 66.7
MethodLength 0 1 1 0.0 0.0

Whitespace 95 76 53 55.6 64.2
EmptyLineSeparator 7 13 1 35.0 87.5
FileTabCharacter 5 1 2 83.3 71.4
GenericWhitespace 7 17 1 29.2 87.5
MethodParamPad 0 1 1 0.0 0.0
NoLineWrap 38 4 4 90.5 90.5
NoWhitespaceAfter 0 9 3 0.0 0.0
NoWhitespaceBefore 1 3 2 25.0 33.3
ParenPad 1 3 10 25.0 9.1
SeparatorWrap 0 2 2 0.0 0.0
SingleSpaceSeparator 1 5 2 16.7 33.3
TypecastParenPad 0 0 1 0.0 0.0
WhitespaceAfter 14 3 14 82.4 50.0
WhitespaceAround 21 15 10 58.3 67.7

Not Related To CheckStyle 1,010 213 112 82.6 90.0
TOTAL 1,397 464 475 75.1 74.6

5.2 RQ2: How accurate is Auto-SCAT?

In the following, we report results aimed at showing the Auto-SCAT classifi-
cation performance, i.e., to what extent code review comments can actually
be mapped onto checks (RQ2.1) and to what extent CheckStyle checks are
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Fig. 3 Performance of Auto-SCAT at check level.

correctly enabled or disabled (RQ2.2). As explained in Section 4, given the six
projects of Table 1, we build the training corpus on five project, and then we
compute the accuracy on the remaining one.

5.2.1 RQ2.1: How accurate is Auto-SCAT to classify code review comments
into CheckStyle checks?

Fig. 3 reports the micro- and macro-averaged precision and recall of our clas-
sifier at different similarity thresholds. Note that, as already highlighted, the
micro-averaged precision and recall assume the same value.
As expected, the micro-averaged precision increases as the threshold increases
from 0, and after reaching inflection at thresholds 0.3 (74.7% precision) and
0.4 (73.0% precision), it starts decreasing. Specifically, at threshold 0, all the
comments are classified into one of the checks leading to low precision (i.e.,
most of the comments are not related to CheckStyle checks). As we start
increasing the minimum similarity threshold, more comments are filtered out
as not related to CheckStyle. This results in an inflection point, after which
the threshold is so high that many correct classifications will be discarded as
not related to CheckStyle since their similarity is lower than the threshold.

Regarding macro-averaged precision and recall, we observe that the recall is
(obviously) highest with a threshold of 0, with a low value of precision (16.1%).
Such a threshold means that all comments are attributed to a check, which
produces a low precision as most comments are either unrelated to CheckStyle.
On the opposite side, at threshold 1, both recall and precision are the lowest
— 1.3% and 0%, respectively. This is because the comments are not classified
into checks unless they are exactly the same to a group of comments of the
same class.

As with micro-averaged precision, when we increase the threshold starting
at 0, the macro-averaged precision starts increasing reaching a deflection point
at 0.3 (31.9%) and 0.4 (29.6%), after which it decreases. The macro-averaged
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recall has the highest values between thresholds 0 and 0.2 (' 38%) after which
it starts dropping quickly until threshold 0.6, reaching a recall of 9.6%.

By looking at Fig. 3, we can conclude that, overall, the micro-averaged
precision and recall are higher than the macro-averaged precision and recall.
In other words, since large classes dominate small classes in micro-averaging
(Manning et al., 2008) and micro-averaged precision and recall are a measure
of effectiveness on large classes, unsurprisingly Auto-SCAT is able to classify
in a better way code review comments belonging to the majority classes (i.e.,
checks that have a great number of code review comments in the knowledge
base).

To summarize, the most suitable threshold that achieves both high pre-
cision and recall is of 0.3, which will be used in the following. Before going
deeper on the performance of Auto-SCAT in identifying code review comments
mapped onto CheckStyle checks, we will briefly report some examples in order
to better understand the reasons why at a threshold of 0.3 and 0.4 Auto-
SCAT shows the best compromise between precision and recall. In Eclipse
CDT there is a code review comment: “Avoid cryptic abbreviations”9 that
with a similarity of 0.39 is properly mapped to the Abbreviation As Word In
Name check, while in Vaadin the comment: “missing javadocs though it is
quite obvious what it does”10 with a similarity of 0.3 is correctly assigned to
the Javadoc Method check.

Table 2 reports the Auto-SCAT precision and recall in identifying code re-
view comments mapped onto different CheckStyle checks and categories by us-
ing, as explained before, a similarity threshold of 0.3. More specifically, for each
check/category we report the number of true positive, i.e., the number of code
review comments correctly mapped onto the check/category, false positive, i.e.,
the number of code review comments wrongly assigned to a check/category,
and false negative, i.e., the number of code review comments belonging to a
specific check/category wrongly assigned to a different check/category. Finally,
by using the above information, we have computed for each check/category
the precision and recall.

By looking at Table 2 we observe that some checks are classified with 0%
precision while some are classified with 100% precision. The majority of the
checks classified with 0% precision have 5 or fewer instances of code review
comments in the textual corpus, except for JavadocVariable, TrailingCom-
ment, LocalVariableName, and MemberName. All the checks with 0.0% preci-
sion have a recall of 0.0%. In order to improve the identification of the above
checks we conjecture that: increasing the number of projects, and the number
of code review comments belonging to them in our textual corpus may help in
improving the performance of Auto-SCAT in properly identifying them.

Moreover, results reported in Table 2 highlight how some categories such
as Block Checks, Class Design, and Imports are more difficult to be identified

9 core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/refactoring/pullup/PullUp
Information.java+refs-changes-77-22177-3
10 client/src/com/vaadin/client/widgets/Escalator.java+refs-changes-28-7628-1
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Fig. 4 Per project performance of Auto-SCAT at category-level for different thresholds.

by Auto-SCAT compared to other checks such as Headers and Miscellaneous.
The above result is mainly related to the vocabulary used for reporting dif-
ferent type of problems belonging to different types of checks. For instance,
the checks in the Miscellaneous category are about substantially different top-
ics meaning that they do not have a common vocabulary. The latter justifies
the reason why Auto-SCAT classifies them with high performance. The same
does not apply to the Javadoc Comments category where the single checks
have a high overlapping in terms of vocabulary. Consider as an example the
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comment “javadoc?” in Vaadin belonging to the Javadoc Method check and
the comment “Please add javadoc like other MICommand” in Eclipse CDT
belonging to the Javadoc Type check. In conclusion, it is possible to state that
for Auto-SCAT it is easier to properly classify code review comments that
belong to CheckStyle checks that have a unique vocabulary.

Looking at the predominant category, namely Not Related to CheckStyle,
we see that Auto-SCAT is able to discriminate those comments from the ones
actually mapped onto CheckStyle checks. Indeed, Auto-SCAT for these type
of comments provides a precision of 82.6% with a recall equal to 90%. More-
over, if we sum up the performance of Auto-SCAT in identifying code review
comments belonging to CheckStyle checks, by excluding data related to the
Not Related to CheckStyle category, we can conclude that the performance are
still good, considering also the high imbalanced ratio between the above two
categories, with an overall precision of 60.7% and an overall recall of 51.6%.

Looking at the overall performance (see the TOTAL row in Table 2) we can
state that Auto-SCAT classifies correctly 1,397 over 1,872 code review com-
ments (precision of 75.1% and recall of 74.6%). The latter is mainly due to the
high precision obtained while classifying comments not related to CheckStyle.

Fig. 4 shows, for each project, the performance of Auto-SCAT at category-
level while varying the similarity threshold. We observe that thresholds 0.3 and
0.4 are optimal for all but two projects — Couchbase and Eclipse JDT Core.
This is probably due to the lower number of code review comments related to
CheckStyle checks, i.e., 10 and 5, respectively.

Fig. 5 Overall performance of Auto-SCAT at category-level for all thresholds.

The overall performance of Auto-SCAT when configuring CheckStyle, varying
the similarity threshold, at category-level is reported in Fig. 5. Similarly to
the results obtained when using Auto-SCAT for classifying the code review
comments into specific CheckStyle checks, also here the optimal performance
is obtained while using a similarity threshold of 0.3 or 0.4. Specifically, using
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Table 3 Performance of Auto-SCAT per project for threshold 0.3 and individual optimal
threshold at category-level.

Threshold 0.3 Optimal Threshold

Project name
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Couchbase 78.9% 29.4% 24.1% 20% 88.8% 31.7% 28.7%
Eclipse CDT 77.3% 49.7% 44.1% 50% 71.6% 63.5% 28.1%
Eclipse JDT Core 50.0% 16.7% 11.1% 10% 75.0% 16.7% 13.9%
Eclipse Platform UI 82.9% 40.6% 38.3% 40% 83.8% 45.5% 31.1%
OpenDaylight Controller 74.7% 66.3% 51.4% 30% 74.7% 66.3% 51.4%
Vaadin 86.2% 48.8% 49.5% 40% 83.9% 56.9% 42.1%

OVERALL (Mean) 75.0% 41.9% 36.41% — 79.6% 46.8% 32.6%

a similarity threshold of 0.3 we obtain a micro-averaged precision of 79.84%
with a macro-averaged precision of 58.51%. Increasing the threshold at 0.4
Auto-SCAT shows a decrease of the micro-averaged precision (76.55%) with
an increase of the macro-averaged precision (65.2%).

While comparing the performance of Auto-SCAT at category-level with the
one at check-level, we observe a slight increase in the micro-averaged precision,
i.e., ' 5% with a threshold of 0.3 and ' 3.5% for a threshold of 0.4. Moreover,
we observe a significant increase in the macro-averaged precision of ' 27%
and ' 36% for thresholds equal to 0.3 and 0.4, respectively.

Table 3 summarizes the performance of Auto-SCAT at category level, when
all checks are calibrated at threshold 0.3 for all projects, and when a per-
project threshold is chosen. We observe that, except for Couchbase and Eclipse
JDT Core, using a threshold of 0.3 leads to similar performance in terms of
the micro-averaged precision compared to the case in which the thresholds are
tuned per-project. As shown in Table 1, these are also the projects with the
smaller number of code reviews (and consequently, of manually validated code
reviews), therefore it is possible that, in these cases, such low value may depend
to chance. Looking at the macro-average precision, instead, the performance
obtained while using the thresholds tuned per-project is slightly better than
the one obtained using a fixed threshold of 0.3.

Table 4 Macro-averaged Precision and Recall of Auto-SCAT for activated relevant checks
per project with threshold equals to 0.3.

Project name Precision Recall

Couchbase 62.5% 71.4%
Eclipse CDT 73.0% 75.0%
Eclipse JDT Core 100.0% 75.0%
Eclipse Platform UI 62.9% 75.9%
OpenDaylight Controller 88.9% 71.4%
Vaadin 48.6% 64.2%

OVERALL (Mean) 72.7% 72.2%



26 Fiorella Zampetti et al.

Table 5 Macro-averaged Precision and Recall of Auto-SCAT for activated relevant cate-
gories per project for threshold 0.3.

Project name Precision Recall

Couchbase 100.0% 100.0%
Eclipse CDT 90.0% 100.0%
Eclipse JDT Core 100.0% 100.0%
Eclipse Platform UI 87.5% 87.5%
OpenDaylight Controller 100.0% 90.9%
Vaadin 100.0% 100.0%

OVERALL (Mean) 96.3% 96.4%

5.2.2 RQ2.2: How accurate is Auto-SCAT to configure CheckStyle?

Table 4 shows the performance of Auto-SCAT regarding the enabling of rele-
vant checks for each project. It is possible to note that Auto-SCAT enables rel-
evant checks with a macro-averaged precision varying from 48.6% up to 100%,
and a macro-averaged recall varying in the range [64.2%-75.9%]. Specifically,
Auto-SCAT shows an overall macro-averaged precision of 72.7% and an overall
macro-averaged recall of 72.2%.

While moving the attention on the accuracy of Auto-SCAT in enabling rel-
evant categories of CheckStyle for the studied projects, as reported in Table 5,
we observe a very high precision and recall, 96.3% and 96.4%, respectively.
Since in this case Auto-SCAT only recommends a category and not a specific
check, both precision and recall are better, at the cost of a coarse-grained
recommendation.

Table 6 Auto-SCAT and baselines compared on Mylyn’s code review comments and coding
guidelines.

Check-level Category-level

Configuration
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Auto-SCAT (@0.3; comments) 89.7% 89.7% 91.1% 91.1%
Auto-SCAT (@0.4; comments) 93.8% 93.8% 94.5% 94.5%
Auto-SCAT (@0.3; guidelines) 30.0% 45.0% 66.7% 85.7%
Auto-SCAT (@0.4; guidelines) 33.3% 25.0% 83.3% 71.4%
Sun/Oracle (default) 21.3% 65.0% 54.5% 85.7%
Google (default) 24.1% 65.0% 54.5% 85.7%
Historical 15.8% 60.0% 46.2% 85.7%

RQ2 Summary: Auto-SCAT leverages code review comments to config-
ure CheckStyle checks with micro- and macro-averaged precision of ' 75% and
32% (see Fig. 3), and CheckStyle categories with micro- and macro-averaged
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precision of 79.6% and 46.8% (see Table 3) for an optimal check calibration.
Moreover, Auto-SCAT shows consistent results across projects when a de-
fault threshold is used. Finally, Auto-SCAT enables checks with high macro-
averaged precision and recall (72.7% and 72.2%, respectively, see Table 4) and
enables almost all the relevant categories (96.3% macro-averaged precision and
96.4% macro-averaged recall, see Table 5).

5.3 RQ3: How accurate is Auto-SCAT compared to a baseline?

Table 6 reports the results of comparing the configuration generated by Auto-
SCAT, at check and category-level with thresholds 0.3 and 0.4, to the baselines
when using the Mylyn’s code review comments and Mylyn’s coding guidelines.

As also done for RQ2, we have evaluated the performance of Auto-SCAT
using knowledge bases constructed differently, i.e., combining check descrip-
tions and code reviewers comments in different ways, and report the one that
performs better, i.e., in this case the one that also considers the checks’ de-
scription provided by the CheckStyle configuration in case no code review
comments are belonging to them, i.e., Comments + descriptions, or just de-
scriptions. We conjecture that, in a practical application scenario, the different
approaches could be tested, or the ones involving descriptions could be pre-
ferred especially when there is little or no history available.

As the table shows, Auto-SCAT classifies code review comments with a
high precision and a high recall at both check and category-level (89.7% and
91.1%, respectively).

Unsurprisingly, precision and recall of the Sun/Oracle and Google Check-
Style default configurations are also much lower than Auto-SCAT. This can
be explained because (i) default configurations enable all possible CheckStyle
checks, many of which may not be relevant for the studied projects’ coding
standards (this explains the low precision). Moreover, the thresholds for each
check are, again, default ones and not configured on projects’ preferences.
For this reason, also the recall is somewhat low, although not as low as the
precision (i.e., '65% at check-level and '86% at category-level).

We need to remark that, as already stated in Section 4, our goal is to
reduce the number of irrelevant warnings produced by SCATs that hinder
their adoption in software development process (Beller et al., 2016; Johnson
et al., 2013; Wedyan et al., 2009; Zampetti et al., 2017) in order to increase
their usefulness, i.e., increase the precision of Auto-SCAT. To quantify the
usefulness of Auto-SCAT, we estimate the time that it would save developers.
Specifically, we estimate the extra time that developers would spend analyzing
irrelevant warnings triggered by the historical configurations by identifying the
false positive warnings of these configurations that are not present in the con-
figuration generated by Auto-SCAT. Results show that the historical approach
generates 10,253 extra irrelevant warnings not generated by Auto-SCAT. Con-
sidering that it takes approximately 8 minutes to analyze a warning (Ruthruff
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et al., 2008), Auto-SCAT saves about 8.5 months of a developer working full
time.

RQ3 Summary: Auto-SCAT outperforms the simple use of a default
CheckStyle configuration, but also the use of historical data to configure the
SCAT both at check and category level when compared with the Mylyn’s cod-
ing guidelines as well as in terms of performance of the classification of code
review comments.

6 Threats to validity

Threats to construct validity concern the relationship between theory and ob-
servation. One important threat can be represented by the ground-truth used
in our study. Such a ground-truth consists of a manually-produced mapping
between code review comments and CheckStyle checks. In particular, (i) we
could have imprecision due to the manual mapping, and (ii) it is possible that,
while a suggestion is given in a code review, it might be never followed up in
the project. To mitigate this threat we have involved two annotators inspect-
ing each comment-warning traceability link, and in RQ3 we have assessed our
results with respect to a ground-truth consisting of Mylyn’s coding standards.
Moreover, while our approach is able to discard comments that do not deal
with stylistic issues with an overall precision of 82.6% and a recall of 90.0%,
Auto-SCAT achieves less positive results in identifying the proper CheckStyle
check (precision of 60.7% and a recall of 51.6%). This result is mainly caused
by the few data points in our gold standard for specific checks. We plan to
address this issue in the future by targeting the addition of more data points
to the less represented categories.

Threats to internal validity concern factors, internal to our study, that
could have influenced the results. A major factor that could impact the per-
formance of Auto-SCAT is represented by its various settings. However, we
show how results vary for different similarity thresholds. Also, we have exper-
imented different text preprocessing steps and different ways of building the
knowledge base and used the one achieving the best performance.

Threats to external validity are related to the generalizability of the results,
as the study is limited to CheckStyle and to six Java open source projects from
four different ecosystems (Couchbase, Eclipse, Vaadin and Open Daylight).
While our empirical evaluation only shows how well CheckStyle can be con-
figured using code review comments, many SCATs detect similar issues such
as documentation, style, and program design. Therefore, a similar approach
could be applied to other SCATs.

7 Conclusion and Future Work

This paper proposes Auto-SCAT, a novel approach to automatically configure
Static Code Analysis Tools (SCATs), by leveraging the content of code re-
view comments. We evaluated Auto-SCAT on data from six Java open source
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projects, to automatically configure CheckStyle. Overall, Auto-SCAT is able to
correctly map code review comments onto CheckStyle checks with a precision
of 75.1% and a recall of 74.6%. Also, based on the evaluation of Auto-SCAT
on data from a project (Mylyn) for which coding standards are available, we
show that Auto-SCAT outperforms default CheckStyle configurations and a
baseline leveraging historical data.

Future work is aimed at extending the approach to further SCATs, and
to perform a fine-grained configuration of the checks, i.e., to automatically
configure check’s parameters. As discussed in Section 5.2.1, the Auto-SCAT
accuracy can depend on the vocabulary consistency between code reviews and
check descriptions, as well as on the extent to which there is a vocabulary drift
between the corpus used for training and the one on which Auto-SCAT is used.
To this extent, it could be useful to investigate the use of thesaurus or lexical
databases to cope with such a vocabulary mismatch. Last, but not least, to
enhance the completeness of SCAT configurations captured by Auto-SCAT,
we will analyze data sources beyond code reviews, e.g., issues, emails or chat
logs, to investigate which of these sources can be used to improve results of
the proposed approach.
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