
Reassessing Automatic Evaluation Metrics for Code
Summarization Tasks

Devjeet Roy

devjeet.roy@wsu.edu

Washington State University

Pullman, WA, USA

Sarah Fakhoury

sarah.fakhoury@wsu.edu

Washington State University

Pullman, WA, USA

Venera Arnaoudova

venera.arnaoudova@wsu.edu

Washington State University

Pullman, WA, USA

ABSTRACT
In recent years, research in the domain of source code summa-

rization has adopted data-driven techniques pioneered in machine

translation (MT). Automatic evaluation metrics such as BLEU, ME-

TEOR, and ROUGE, are fundamental to the evaluation of MT sys-

tems and have been adopted as proxies of human evaluation in the

code summarization domain. However, the extent to which auto-

matic metrics agree with the gold standard of human evaluation has

not been evaluated on code summarization tasks. Despite this, mar-

ginal improvements in metric scores are often used to discriminate

between the performance of competing summarization models.

In this paper, we present a critical exploration of the applicability

and interpretation of automatic metrics as evaluation techniques

for code summarization tasks. We conduct an empirical study with

226 human annotators to assess the degree to which automatic

metrics reflect human evaluation. Results indicate that metric im-

provements of less than 2 points do not guarantee systematic im-

provements in summarization quality, and are unreliable as proxies

of human evaluation. When the difference between metric scores

for two summarization approaches increases but remains within

5 points, some metrics such as METEOR and chrF become highly

reliable proxies, whereas others, such as corpus BLEU, remain unre-

liable. Based on these findings, we make several recommendations

for the use of automatic metrics to discriminate model performance

in code summarization.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• General and reference→ Metrics; Evaluation.

KEYWORDS
automatic evaluation metrics, code summarization, machine trans-

lation

ACM Reference Format:
Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassess-

ing Automatic Evaluation Metrics for Code Summarization Tasks. In Pro-
ceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),
August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468588

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3468588

1 INTRODUCTION
Useful source code comments play a vital role in program compre-

hension and other software maintenance activities [45, 58]. How-

ever, proper documentation comes at a cost and producing well-

written comments requires a substantial amount of effort on the

part of software developers. This is one of the motivating factors

behind why source code summarization is a rapidly growing re-

search area—at least 18 papers proposing or evaluating automated

summarization approaches are published in 2020 [1, 2, 10, 16, 18,

20, 22, 24, 27, 32, 47, 52, 55, 56, 60, 61, 63, 66].

The earliest code summarization approaches are based on strong

syntactic theories of comment structure, information retrieval, and

textual templates. These approaches typically evaluate the quality of

a generated summary using human annotators who rate summaries

on metrics such as as: content adequacy [36], conciseness [23, 37],

and fluency [37, 38, 50].

In the last 5 years, the solution space for code summarization

has significantly shifted towards the widespread adoption of tech-

niques and evaluation metrics from the Machine Translation (MT)

domain. Prior to 2015, virtually all summarization approaches in-

volved template or information retrieval based techniques. In 2015,

the first paper using an MT approach was published at an SE con-

ference [39], and, to the best of our knowledge, there are 35 pa-

pers thus far that propose an approach, an evaluation, or a cri-

tique of MT summarization approaches [2–5, 8–10, 12, 16–21, 23–

25, 27, 28, 31, 35, 39, 47, 48, 53–57, 59–62, 65, 66]. Note that 7 of

those are published in 2019 and 13 in 2020 alone.

One of the primary reasons for this shift is the idea that trans-

lating source code to its natural language equivalent holds many

parallels with the concept of translating one natural language to

another [23]. A side effect of this shift is a substantial change in

the amount of data needed to evaluate code summarization ap-

proaches; training generative models requires a large amount of

data. Naturally, the evaluation techniques used must also scale, and

automated metrics provide an efficient way to evaluate the quality

of generated summaries en mass.

Automatedmetrics designed to evaluate natural language transla-

tion approaches, such as BLEU [40], METEOR [6], and ROUGE [30],

have been adopted by code summarization researchers where a

generated summary is compared to a ‘gold standard’ or ‘reference’

summary. In the context of leading comment summaries, the refer-

ence summary is often the original accompanying comment written

by a developer.

In the MT domain, BLEU has long been accepted as a de-facto

best-practice metric. Recently, however, prominent machine trans-

lation researchers have raised concern over the use of BLEU [34,

42, 43], warning the MT community that the way BLEU is used

https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1145/3468264.3468588

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

and interpreted can greatly affect its reliability. Moreover, while

evidence supports BLEU for diagnostic evaluation of MT systems,

it does not support using BLEU outside of MT [43].

Alarmingly, although critiques of BLEU have been published

for over three years now, the reliability and validity of minor im-

provements for those automatic metrics with respect to human

evaluations have not been re-assessed in the domain of Software

Engineering for the purpose of code summarization.

In this paper, we present a critical exploration of the applicability

and interpretation of automated metrics, for code summarization

tasks. First, as a motivational research question, we compare the dis-

tributions of automatic metric scores for 5 existing summarization

approaches, and we show that similar to MT, when the automatic

metric difference is marginal (within 2 points) the distributions are

not statistically different, meaning that none of the approaches can

be declared as a state-of-the-art based solely on automatic metrics.

Next, we investigate whether automatic metrics are reliable prox-

ies for human evaluations, i.e., whether automatic metrics are able

to reflect perceived quality improvements in generated summaries,

as indicated by human annotators. We do that both at corpus- and

summary-levels using results from 226 human annotators. Corpus-

level metrics have the advantage to provide an overview of the

performance of an approach on a corpus. Summary-level metrics al-

low traceability when trying to understand the situations in which

an approach does not perform well and thus allow to target those

for improvements.

We show that, at corpus-level, when the difference between

automatic metric scores for two summarization approaches is ≤ 2

points, all automatic metrics are very unreliable (i.e., they make an

error in more than 70% of the cases on average, ranging from 62.5%

to 83.7%). We also show that the minimum threshold for reliability

for automatic metrics varies significantly across the metrics we

evaluated. Notably, METEOR and chrF are extremely reliable for
differences greater than 2 points; exhibiting 1.3% and 2.6% error rates,

respectively. Finally, we show that summary-level metrics do not

have sufficient discriminative power to reflect human evaluation

and thus cannot be used as reliable proxies.

Implications. Our goal is not to identify the current state-of-

the-art summarization approach, but rather to provide a critical

evaluation of automatic evaluation metrics as they are currently

used in code summarization research. For instance, from the 30

papers that declared state-of-the-art summarization techniques in

the past 5 years, 15 of them report improved performance base on

metric improvements within the range of 0-2 points, for which,

as we show, all metrics are unreliable. Our findings enable the SE

community to contextualize these results in order to better interpret

evaluations of code summarization approaches.

The main contributions of this work are as follows:

(1) We show that small differences in metric scores might not

guarantee systematic differences in summarization quality

between two approaches.

(2) We demonstrate that automatic evaluation metrics com-

monly used in source code summarization are not reliable

indicators of human assessment when metric differences are

small (< 2 points).

(3) We provide concrete recommendations for practitioners re-

garding the interpretation of evaluation metrics as well as

the design of human evaluation studies.

(4) A replication package containing human annotations and

the representative random sample of source code snippets

used in this work [46].

Vocabulary Throughout this paper we will be drawing parallels

between the domain of Machine Translation (MT) and the Code

Summarization sub-domain of Software Engineering. To remain

consistent, we adapt the vocabulary of the former to the latter. In

MT a system is analogous to a code summarization approach. System-
level metrics in MT corresponds to metrics that are calculated for

the entire corpus and will be referred to as corpus-level metrics
here. In MT a sentence or translation-level metric is referred to as

a segment-level metric, whereas in code summarization this will

be referred to as a summary-level metric. Terminology denoting a

ground truth translation, or summary, is referred to as a reference
in both domains.

2 RELATEDWORK
2.1 Evaluation of Automatic Metrics in

Machine Translation
In the past few years, a number of researchers in the machine

translation community have called for a reevaluation of the gold

standard metrics and procedures being used.

In 2018, Reiter [43] presented a structured review of the validity

of BLEU and found that while there is evidence that supports using

BLEU for diagnostic evaluation of MT systems, it does not support

using BLEU outside of the MT domain, for evaluation of individual

texts, or for scientific hypothesis testing.

Most recently, in their 2020 paper Mathur et al. [34] highlight

serious issues with the current methods for evaluating metrics in

MT. The use of Pearson’s (𝑟) to determine how metrics correlate

with human assessment is highly sensitive to the translations used

for assessment, particularly the presence of outliers. They demon-

strate how this method often leads to inflated conclusions about the

efficiency of a metric. Mathur et al. also show that small changes

in evaluation metrics (e.g., 1–2 points BLEU on a 100 scale) are

not enough to draw empirical conclusions, and they should be

supported with manual evaluations.

Our work investigates how reliable automatic metrics are as

proxies for human evaluation, and howmetric thresholds thresholds

translate in the domain of source code summarization.

2.2 Evaluation of Automatic Metrics in Code
Summarization

LeClair and McMillan [26] point out the lack of suitable datasets

and community standards to create those datasets in the code sum-

marization domain, which results in confusing and un-reproducible

research results.

Stapleton et al. [52] explore how automatically generated sum-

maries effect code comprehension and show that participants per-

form significantly better on snippets that contain human written

summaries, as opposed to generated summaries. However, they

Reassessing Automatic Evaluation Metrics for Code Summarization Tasks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

were not able to show a correlation between human performance

and automatic metric scores.

Gros et al. [16] show that, as compared to natural language

datasets, source code comments are much more repetitive which

can have a significant and exaggerated impact on the performance

of an approach. They also demonstrate that BLEU scores vary con-

siderably between different ways of calculation.

Building upon previous work we investigate the reliability of

corpus- and summary-level automatic metrics with respect to hu-

man assessments scores, and devise guidelines for minimum im-

provements in automatic metric scores that must exist in order to

systematically demonstrate perceivable improvement by human

evaluation.

3 STUDY DESIGN AND SETUP
In this section, we formulate the research questions that guide this

study, provide details regarding the dataset and automatic metrics

chosen for this work, and the survey designed to collect human

evaluations.

3.1 Research Questions
RQ0 Is there a significant difference in the corpus level met-

rics of different models? Automatic evaluation metrics

help discriminate between two approaches based on their

ability to summarize source code. However, these metrics

are not designed to be used in isolation, and simply attaining

a higher metric score is insufficient to establish whether one

code summarization approach is better than another. This

research question investigates if increases in metric scores

result from systematic improvements in the quality of the

summaries generated by an approach, rather than by chance.

RQ1 Do commonly used corpus-level metrics reflect human
quality assessments of generated summaries? Automatic

evaluation metrics are designed to serve as an approximation

of human assessments. The development and performance

of these metrics have been extensively documented in the

natural language domain, however, it is unclear how they

perform in the context of source code summarization. In

this research question, we measure the degree of agreement

between corpus-level metric proxies and actual human as-

sessment scores. Specifically, we measure their agreement in

the context of discriminating two summarization approaches

using pairwise tests of significance.

RQ2 Are summary-level metrics able to reflect human qual-
ity assessments of generated summaries? Corpus-level

metrics can not explain nuance in an approach’s performance

at a summary level because they provide a single score for an

approach, across all of its generated summaries, thus trace-

ability to individual summaries is impossible. Summary-level

metrics score individual summaries and enable a direct com-

parison of a human assessment score to a metric score for

each generated summary. However, summary level metrics

have been shown to have a lower correlation on natural lan-

guage datasets [49, 64]. We investigate whether this is also

the case for code summarization tasks.

Graduate
Student

Professional
Developer

Working in
Academia

Undergraduate
Student

Other

0 25 50 75

Gender
Man
Non−Binary
Prefer not to disclose
Prefer to self describe
Woman

Figure 1: Demographics for Human Annotators.

3.2 Dataset
Haque et al. [18] recently proposed an improvement to existing

summarization techniques by leveraging the file context of Java

methods. In their work, they apply the proposed improvement to

several existing techniques on a publicly available dataset [26], and

provide a replication package containing all requisite materials

required for easy replication. Due to the recency of the work, the

ease of replication, and variety of approaches presented, we select

five summarization approaches from their replication package to

use in our study as follows: ast-attendgru , ast-attend-gru-fc,

code2seq, graph2seq and transformer, which we will refer to

as M1–M5. The replication package includes approach snapshots

at various epochs. We use the snapshots that have the best corpus

level performance for each of the selected approaches.

3.3 Survey Design
To evaluate the degree of agreement between automatic metrics

and human assessments, we ask annotators to rate individual sum-

maries
1
. Each annotator is shown 6 different code snippets (i.e., Java

method implementation). For each snippet, participants evaluate

5 summaries (generated by the 5 summarization approaches), as

well as the reference summary. The order in which the snippets

and summaries are presented is randomized. The survey takes on

average 15 minutes to complete.

3.4 Human Annotators
We recruit annotators through social media and direct emails to

researchers and practitioners in the SE community. Participants are

asked demographic information, including the number of years of

academic and professional experience. Figure 1 displays the distri-

butions of the human annotators participating in the study. A total

of 226 people submitted annotations: 48 professional developers,

61 working in academia, 87 graduate students, 17 undergraduate

students, and 13 others. 92% of the participants have experience

with Java.

3.5 Automatic Metrics
An automatic metric compares generated summaries with manual

reference summaries to produce (1) a corpus-level score, i.e., a single

overall score for the given approach, (2) summary-level scores for

each of the generated summaries, or (3) both. We select metrics that

are most commonly used by code summarization approaches [50]

1
This study has been certified as exempt from the need for review by the Washington

State University Institutional Review Board.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

or that show the best performance from the most recent WMT

2019 findings [33] (results for the metrics task for WMT-2020 have

not been published yet). One notable mention here is that we re-

place YISI (best performing segment level metric in WMT19) with

BERTScore [64], since the word embeddings required to run YISI are

no longer available on the author’s website. We use the official im-

plementations of each metric used by WMT or the author provided

implementation, when available. Details about the implementations

used are available in the replication package.

(1) Corpus-Level Only
(a) BLEU [40] is a textual similarity metric that calculates the

precision of n-grams in a translated sentence as compared

to a reference sentence, with a weighted brevity penalty

to punish short translations. We use the standard BLEU

score which provides a cumulative score of uni-, bi-, tri-,

and 4-grams.

(b) ROUGE [30] is a popular automatic evaluation metric that

is recall oriented. It computes the count of several over-

lapping units such as n-grams, word pairs, and sequences.

ROUGE has several different variants from which we con-

sider the most popular ones: ROUGE-N(1-4), ROUGE-L,

and ROUGE-W.

(2) Summary-Level Only
(a) sentBLEU is a smoothed version of BLEU, designed to

score translations at a segment level. In our analysis, we

use the script provided by NLTK with smoothing method

5, as reported in [7]
2
.

(3) Both Summary- and Corpus-Level
(a) METEOR [6] is a metric based on the general concept of

unigram matching, and it combines precision, recall, and

a custom score determining the degree to which words

are ordered correctly in the translation.

(b) BERTScore [64] is a newer type of automatic evaluation

metric that employs contextual word embeddings using

the widely popular BERT language model, to compute

the semantic and lexical similarities between a model’s

predictions and reference tokens.

(c) chrF [41] is another recent automatic evaluation metric

that works solely on character n-grams rather than word

n-grams. It can be seen as a character n-gram F-score.

3.6 Sampling and Data Preprocessing
3.6.1 Sampling. The test set in the dataset described above con-

tains 90,908 source code snippets and their corresponding reference

summary. For RQ1 and RQ2, we randomly sample 383 snippets (95%

confidence level and a confidence interval of ±5%). For each method,

we generate 5 summaries (using the 5 selected summarization ap-

proaches). Including the reference summary, this results in a total

of 2,298 (=383*(5+1)) unique summaries needing evaluation. We aim

for 3 annotators for each summary, i.e., a total of 6,894 (=2,298*3)

unique human evaluations are needed.

3.6.2 Data Preprocessing. Each of the 383 snippets has summaries

written by 3 participants that are used for quality control (RQ1 and

2
Chen and Cherry [7] show that smoothing method 7 performs the best, but we

encountered unstable results (NANs) with it. Method 5 is the second best performing

smoothing method, with a small performance difference.

RQ2) and for the analysis of multiple references (RQ2). This is a to-

tal of 1,322 (=383*3) collected summaries written by the annotators.

After collecting the data, we discarded answers that either did not

contain summaries (as in such cases it is impossible to know if the

annotator understood the method) or contained summaries that in-

dicated a clear misunderstanding of the method’s functionality. We

also excluded annotators who clearly misunderstood the questions.

Examples include annotators who provided rankings from 1 to 6

instead of scores from 1 to 100, and annotators who provided the

same scores for all snippets and all summaries. We used standard

outlier detection techniques to identify potential anomalies and

validated them manually. After removing outliers, some snippets

had 2 evaluations (instead of 3). We added a third evaluation if the

existing two evaluations did not converge (i.e., if the difference in

human scores is greater than 25 points out of 100). We kept the

survey open until we gathered the necessary annotations.

Finally, after cleaning the data, we retained 6,253 unique human

evaluations of summaries for the analysis.

4 ANALYSIS METHOD
4.1 Human Assessment of the Quality of

Summaries
4.1.1 Collection of human assessments. Human assessments for

each approach are collected using two different scales: Likert Scale

and Direct Assessment (DA) scores.

Likert Scale. Annotators rate different aspects of each summary,

namely: conciseness, fluency, and content adequacy on a 5-point

Likert scale [29]. Those aspects are standard and have been used in

both MT [43] and in code summarization [38, 50] evaluations with

human annotators. To calculate a golden truth score, the values

from the Likert scale are averaged across all human evaluations to

create a sentence-level or a corpus-level score, per approach.

Direct Assessment (DA) Scores. Direct Assessment (DA) [14]

is a standard technique used in MT to collect summary evalua-

tions using a visual analog scale from 0 to 100. DA scores provide

reference-free human assessments of each approach for a given

snippet, i.e., an assessment independent of the original reference

summary for that snippet. We modify the DA process to fit our

needs and ask annotators to first summarize the snippet and then

evaluate a set of summaries for that snippet. One of the summaries

is the original summary and the rest are the generated summaries;

annotators are unaware of whether a summary is automatically

generated or written by developers.

4.1.2 Interpreting human assessments at summary- and corpus-level.
Interpreting human scores at corpus-level is different from inter-

preting them at summary-level.

Corpus-Level Golden Truth. Collecting enough human as-

sessments for corpus level analysis is feasible since the assessments

for each individual summary contribute towards the corpus level

human assessment. The corpus level human assessment score for

an approach is the mean of all its human assessment scores. Mean

scores calculated this way have been shown to be consistent and

reproducible for MT tasks [14].

Reassessing Automatic Evaluation Metrics for Code Summarization Tasks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Summary-Level Golden Truth (DARR). However, at a sum-

mary level, only assessments for that summary are taken into ac-

count. Graham et al. [14] found that 15 human assessments per

summary are required in order to provide a stable and reproducible

mean human assessment score for a summary. Collecting such a

large number of assessments per summary drastically raises the

number of human annotators required. To mitigate this issue, we

follow the Ma et al. [33] and convert Direct Assessment scores into

pairwise relative rankings, known as Direct Assessment Relative

Rankings (DaRR). One human assessment for each of the 5 ap-

proaches for a single snippet we consider yields 10 pairs of relative

ranking assessments, wherein each pair is a human assessment of

whether one approach is better than the other, or of equal quality.

In the following, we describe the analysis method we follow to

evaluate automatic metrics at summary- and corpus-level.

4.2 RQ Analysis Method
4.2.1 RQ0. Is there a significant difference in the corpus level metrics
of different models? For summary-level metrics or corpus-level met-

rics that are defined as an aggregation of individual summary-level

metric scores, we can compute the significance of the difference of

metric scores between two summarization approaches using tradi-

tional statistical techniques, such as a paired t-test or a Wilcoxon

Sign-Rank test. However, these tests cannot be applied to corpus-

level only metrics, such as BLEU, wherein the corpus-level score

is not composed of individual summary level scores. Hence, it is

common practice in the MT community to instead use randomized

significance testing for comparing corpus level scores [15]. A com-

monly used test is paired bootstrap resampling. However, bootstrap

resampling is sensitive to the sample being tested; it assumes that

the sample is representative of the larger population, a tenuous

assumption for small sample sizes [44]. While Graham et al. [15]

found that this concern might be exaggerated, we nonetheless fol-

low a conservative approach and utilize an alternative randomized

significant test, known as approximate randomization (a variant of

permutation testing), which can provide greater statistical power

while simultaneously making no assumptions about the underlying

sampling distribution.

To understand how approximate randomization works, consider

two summarization approaches, 𝐴 and 𝐵, with metric scores 𝑆𝐴
and 𝑆𝐵 for a given metric. Our null hypothesis (ℎ0) is that there

is no difference in the metric scores between the two approaches

(𝑆𝐴 = 𝑆𝐵). The approximate randomization test approximates the

sampling distribution of the test statistic by randomly shuffling 50%

of the summaries between the two approaches several times (the

number of shuffles is defined by the parameter 𝑅). For each shuffle,

we calculate a pseudo-statistic (𝑆𝑟
𝐴
& 𝑆𝑟

𝐵
), which is the same as the

test statistic but computed for the shuffle. Then, for a one-tailed

test, we can simply count the number of shuffles for which the

test statistic is smaller than the pseudo-statistic for each shuffle,

which in turn is used to compute the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for the test. In other

words, the test assumes that each summary is equally likely to

come from approach 𝐴 or 𝐵, and if the two approaches are not

significantly different, the shuffling should not affect the difference

in their metric scores.

4.2.2 RQ1. Do commonly used corpus-level metrics reflect human
quality assessments of generated summaries? To measure the degree

to which automatic metric scores agree with human assessments,

we first build a set of synthetic approaches from existing approaches

in our dataset. Then, we compute the overall corpus-level corre-

lation of automatic metric scores with human assessments and

pairwise corpus-level significance tests to determine the degree to

which human assessments agree with automatic evaluation met-

rics. The rationale behind building synthetic approaches is that

collecting human assessments of a large number of approaches

is extremely resource intensive. Moreover, the lack of a common

benchmark dataset with publicly available prediction logs and the

computational cost of training these approaches on a new common

dataset can be prohibitive. Synthetic approaches created this way

have the added benefit of providing diversity in metric scores. Thus,

we collect human assessments for five approaches, and then we

use these assessments to create a set of synthetic summarization

approaches by systematically improving or degrading each of the

original approaches to bolster the initial set of approaches. We de-

scribe details for the creation of the synthetic approaches and the

analysis below.

Synthetic Models. To create a synthetic model, we start with

one of the five approaches and replace a varying proportion of the

predictions with predictions from other approaches that receive a

higher or lower human assessment score. We parameterize the cre-

ation of these approaches by the proportion of predictions replaced,

and the minimum threshold for which the human assessment score

for a prediction is deemed better/worse. We replace predictions

from a model at 8 different proportions, in particular: 1%, 2%, 5%,

10%, 15%, 20%, 25%, and 30% of the predictions.

To improve 1% of a model’s predictions, for example, we choose

its 1% worst performing predictions and replace them with the best

existing prediction from the remaining models. We use 5 different

thresholds for minimum human score improvement: 1, 5, 10, 15,

and 20 (out of 100). This is to say that if the minimum human score

improvement is set to 15, then if between amodel’s worst prediction

and the best prediction of other models the difference is less than

15, we discard this data point. This combination of proportions

and thresholds gives us 40 (= 8 ∗ 5) different configurations for
generating synthetic models. For each configuration, we both im-

prove and degrade the score. As we start out with 5 summarization

approaches, we end up with 400 (= 40 ∗ 2 ∗ 5) synthetic models.

After de-duplicating, we are left with 267 unique synthetic mod-

els that have unique corpus-level human scores. To keep the com-

putation time for our pairwise approach comparison, we randomly

sub-sample 100 from the set of synthetic models (100 models yield

4,950 pairwise combinations, whereas 267 models yield 35,511

pairwise combinations). Combined with the 5 summarization ap-

proaches, we end up with a total of 105 models that we use for our

analysis in RQ1.

Pairwisemodel comparison of humanassessment and cor-
pus level metrics. We conduct pairwise model comparisons be-

tween human assessments andmetric scores using themethodology

adopted by Mathur et al. [34], which we briefly describe here. We

start by enumerating all pairs of summarization models in our sam-

ple (including both original and synthetic models) and computing

pairwise differences in corpus-level metric scores. We then divide

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

these pairs into several different buckets based on the statistical

significance of the metric score difference as well as on the magni-

tude.

For example, a bucket can be defined for statistically significant

metric differences between 2 and 5. For each of these pairs, we also

calculate the significance of the difference in their corresponding

human assessment scores (DA). The effectiveness of a corpus-level

metric can then be determined by looking at the agreement between

the metric score and human assessment score. In other words, given

two models with significantly different metric scores, we aim to

understand if this difference is also determined as significant by

human annotators. For a reliable automatic evaluation metric, one

expects to find a one-to-one correspondence between significant

differences in metric scores and human assessment scores.

4.2.3 RQ2. Are summary-level metrics able to reflect human quality
assessments of generated summaries? To answer this RQ, we calcu-

late the summary level correlation of automatic metric scores with

human assessment scores. While DA scores are continuous and

amenable to traditional correlation coefficients such as Pearson’s

and Spearman’s Correlation, it has been shown empirically that at

least 15 human assessments are required per summary for results

to be stable [13]. Hence, we follow [33], and convert DA scores to

pairwise DARR scores as explained in Section 4.1.2. To compute a

correlation between the DARR scores and the corresponding metric

scores for our dataset, we employ a modified version of Kendall’s

𝜏3 to compute this correlation:

𝜏 =
|𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 − 𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 |

|𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 + 𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 +𝑇𝑖𝑒𝑠 | (1)

where concordant, discordant, and tied pairs for two summaries

𝑠1 and 𝑠2 in a DARR pair are calculated according to Table 1. By

comparing how humans (rows) and metrics (columns) relatively

rank the two summaries, we mark the pair as either concordant

(human and metric relative ranks agree), discordant (human and

metric relative ranks disagree) or tied (metric relative ranks are

the same). This specific formulation penalizes metrics that have a

large number of ties, as opposed to the variant used most recently

in WMT [33], which discards ties in human or metric scores. In

WMT’s formulation, ties in metric differences and human scores are

discarded. As a consequence, metrics that produce a large number

of ties can exhibit a high correlation with human judgment, despite

having a large proportion of ties. For example, a metric with 5

concordant, 1 discordant and 500 ties would attain a high correlation

of 0.8, with the 500 ties not being accounted for in the correlation.

Our formulation explicitly penalizes ties and prevents this scenario.

We direct the reader to Stanchev et al. [51] for a detailed treatment of

the different formulations of Kendall’s Tau for machine translation

evaluation. We follow WMT protocol, and consider a difference of

less than 25 in DA scores as a non-significant difference i.e., the two

summaries are deemed to be of equal quality [33]. This is because

pairs of assessment’s in a DARR score are comprised of individual

3
An adaptation is needed since the original Kendall’s 𝜏 is used to measure the cor-

relation of a single pair of joint random variables, i.e., we would need the complete

ranking of all summaries by both human scores (by each human annotator) and auto-

matic metrics. However, DARR pairs can only provide disjoint rankings of 5 model’s

summaries, and not a complete ranking of all summaries in the dataset. Hence, we use

a version of Kendall’s 𝜏 adaptation originally proposed by Graham et al. [13].

assessments collected on a visual analog scale rather than a precise

numeric scale, and therefore small differences in individual DA

scores can be discarded. On a corpus level, such thresholding is

not needed, as the analysis there involves several DA scores and

statistical tests can be used to determine the significance of the

difference between two systems.

Table 1: Modified Kendall’s 𝜏 : Concordant and Discordant
Pair Formulations.

Metric

𝑠1 < 𝑠2 𝑠1 = 𝑠2 𝑠1 > 𝑠2

DA

𝑠1 < 𝑠2 Concordant Tie Discordant

∥𝑠1 − 𝑠2∥ ≤ 25 - - -

𝑠1 > 𝑠2 Discordant Tie Concordant

5 RESULTS
In this section, we answer the research questions defined in Sec-

tion 3.

5.1 RQ0: Is there a significant difference in the
corpus level metrics of different models?

The corpus level scores for each of the models are shown in Table 2,

for the entire test set of the dataset by LeClair et al. [26] (see the

left side of Table 2, highlighted in gray). We also report the metric

scores for the sample we use for RQ1 and RQ2 to see how the trends

in metric scores change from the corpus to the sample (right side

Table 2). For both splits, M1 tends to be a top performer across

all but 2 metrics, chrF and METEOR for the entire test set, and

ROUGE-1 and ROUGE-4 for the sample. M5 is consistently theworst

performing model across both splits, with its scores often being

half the score of the closest performing model. We also observe

that the pairs of models (M1, M2) and (M3, M4) tend to have similar

metric scores (< 1 point) within the pair. Across the pairs, the

metric difference ranges within 2 points. Both the within pair and

across pair differences in metric scores are plausible scenarios when

comparing a newly proposed approach to the existing state of the

art, as it is uncommon to improve on the state of the art by more

than 2 metric points.

The results of the approximate randomization test for each com-

bination of 2 approaches shows that there is no statistically signifi-

cant (𝑝 > 0.05) difference between the metric scores of the top 4

Table 2: Corpus-Level Automatic Metric Scores.

Entire Test Set Sample Only
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

BERTScore 35.7 35.1 34.0 34.6 19.4 39.3 37.1 37.0 38.3 21.9

BLEU 19.9 19.6 18.6 18.6 5.4 22.0 20.8 21.2 21.6 6.7

chrF 38.3 38.6 37.2 37.6 21.1 41.4 40.5 40.0 40.6 22.5

METEOR 19.5 19.6 18.9 18.8 8.2 21.4 21.0 20.4 20.9 8.8

ROUGE-1 46.5 46.4 45.8 45.7 23.5 49.0 48.2 47.6 48.1 24.8

ROUGE-2 26.1 25.9 25.5 25.3 8.5 29.7 26.7 27.5 28.3 9.8

ROUGE-3 17.1 16.9 16.3 16.1 2.7 20.3 17.1 18.1 19.0 4.0

ROUGE-4 12.3 12.0 11.2 11.0 1.7 13.6 11.8 13.6 13.8 2.4

ROUGE-L 44.5 44.4 43.9 43.8 22.9 47.1 46.1 45.9 46.2 24.1

ROUGE-W 44.5 44.4 43.9 43.8 22.9 47.1 46.1 45.9 46.2 24.1

Reassessing Automatic Evaluation Metrics for Code Summarization Tasks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Corpus-level Human Assessment Scores.

Overall Content

DA Score Conciseness Adequacy Fluency

reference 54.40 3.27 3.14 3.46

M1 48.22 3.37 2.89 3.49

M2 49.15 3.32 2.97 3.38

M3 49.63 3.38 2.99 3.47
M4 49.44 3.39 2.93 3.46

M5 16.38 2.31 1.49 2.92

performing approaches. This means that in terms of all automatic

evaluation metrics considered in this paper, the top 4 approaches

perform equally well, despite small differences in their scores. How-

ever, each of M1, M2, M3 and M4 is significantly better than M5,

the worst performing approach.

RQ0 takeaway: When looking at the distribution of automatic

metric scores at corpus-level, there is no statistically significant

difference in performance between models whose performance

is within a 1.5 point difference. This means that such a difference

in scores does not guarantee that an approach with a higher

metric score offers a systematic improvement over the approach

with the lower score. We do however observe a statistically

significant difference in performance between models whose

performance difference is greater than 10 points.

5.2 RQ1: Do commonly used corpus-level metrics
reflect human quality assessments of
generated summaries?

Human Assessments of Summarization Approaches. Table 3
contains the human assessment scores at corpus-level for each

of the approaches. We observe that the reference summaries are

rated with the highest score in terms of DA scores, which is a

5 point difference from the best DA score for a summarization

approach. This indicates that the reference summaries are perceived

as having higher quality compared to the automatically generated

summaries in terms of DA; the difference is statistically significant.

The reference summaries also score the highest in terms of content

adequacy. References, however, perform worse than M1-4, in terms

of conciseness, and worse than M1 and M3 in terms of fluency.

Overall, all approaches perform similarly to each other in terms

of DA, content adequacy, fluency, and conciseness. The exception is

M5, which ranks significantly lower across all metrics. The DA score

for M5 is more than 26 points lower than the closest performing

approach. We also conduct a pairwise Wilcoxon Signed-Rank test

to check whether the differences in DA score for the approaches are

significant. We find that the human written summaries are rated

significantly based on DA scores when compared to automatic

summaries generated by M1–M5. When we consider only model

generated summaries, there is no significant difference between

the scores of the top 4 models. The corpus level DA scores for all of

these models lie between 2 points of each other. There is, however,

a significant difference when comparing any of the top 4 models to

the worst performing model,M5.

Pairwise Model Comparisons. Given two summarization ap-

proaches 𝐴 and 𝐵, and an automatic evaluation metric, we are

interested in whether a difference in their respective human assess-

ment scores is reflected in their metric scores 𝑆𝐴 and 𝑆𝐵 . We can

characterize this relation by studying instances 1) where a metric

detects a change in quality when none is perceived by human asses-

sors (Type-I Error), and 2) where a metric fails to detect a change

in quality when there is a human perceived quality change (Type-II

Error). To conduct this analysis, we enumerate all pairwise com-

binations of models (original and synthetic), and conduct paired

difference tests on their metric and human quality assessments. By

comparing the results of these tests, we can quantify the Type-I

and Type-II errors of the metric with respect to human quality

assessments.

Figure 2 and Figure 3 represents all pairwise summarization

approach comparisons for BLEU and METEOR, respectively. Each

point on the plot represents a pair of summarization approaches

𝐴 and 𝐵. The y-axis represents the metric difference between the

approaches for a pair (𝑆𝐴 − 𝑆𝐵) and is binned into 5 groups. The

first bin labelled “NS” represents differences in metric scores that

are not significant, while the rest represent significant differences

in metric scores. The x-axis represents the corresponding change

in the human overall DA score. Each pair is colored to indicate

whether the change in DA score is significant. Each pair is ordered

to represent an improvement from 𝐴 to 𝐵, i.e., 𝑆𝐵 > 𝑆𝐴 . For all

significant differences in metric scores (all bins excluding “NS”), we

will see a positive and significant change in human assessment score

when the metric decision aligns with human decision. Any pairs

here that are deemed to be of equal quality (dark blue pairs) in these

bins represent Type-I errors. For all non-significant differences in

metric scores (first bin) we expect to see non-significant differences

in human DA scores (dark blue pairs) when the metric aligns with

human assessment. Any pairs with a significant difference in human

scores (green or red) here represent Type-II errors. We also report

precise numbers of Type-I and Type-II errors for all metrics in

Table 4.

We observe that for both BLEU and METEOR, there exist several

pairs that are assessed as better (𝑆𝐵 > 𝑆𝐴) or worse (𝑆𝐴 < 𝑆𝐵) by

human assessors but insignificant by the evaluation metric (first

bin). This is also true for all of the other metrics we consider (figures

omitted for space). From Table 4, we see that the majority of these

Type-II errors occurs when themetric difference is less than 2 points,

and gradually diminishes as the metric difference increases. Within

the bin (0, 2], all metrics have a Type-II error range from aminimum

of 69% (BERTScore) to a maximum of 82.5% (ROUGE-4). BLEU is

the worst metric here; out of the 2,285 metric pairs it rates as being

of equal quality, human assessors rate 1811 of these pairs to be

significantly different. All the other metrics make this error on less

than 1600 pairs in this bin. Overall, we see that when differences in

metric scores are small (< 2 points), all automatic evaluation metrics

are highly susceptible to Type-II errors. When we move to the next

bin (2, 5], we see that the Type-II error diminishes for all metrics.

While the overall Type-II error rate increases for most metrics, i.e.,

the percentage of the times that these metrics align with human

assessment when they report a non-significant difference, the total

number of times that they make a Type-II error is strikingly low

compared to the previous bin (< 80 for all metrics besides BLEU).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

Notably, METEOR commits no Type-II errors in this bin. The rest

of the metrics, excluding BLEU, commit no Type-II errors when

metric differences are larger than 5. Lastly, BLEU ceases to make

Type-II errors when metric differences are larger than 10.

(15.0, 20.0]

(10.0, 15.0]

(5.0, 10.0]

(2.0, 5.0]

(−0.001, 2.0]

−20 0 20 40
DA Difference

M
et

ric
 D

iff
er

en
ce

NS

Better

Worse

Figure 2: Pairwise BLEU vs DA Scores.

(10.0, 15.0]

(5.0, 10.0]

(2.0, 5.0]

(−0.001, 2.0]

NS

0 20 40
DA Difference

M
et

ric
 D

iff
er

en
ce

Better
Worse
NS

Figure 3: Pairwise METEOR vs DA Scores.

Wenow turn our attention to Type-1 errors. From Figures 2 and 3,

we see that both BLEU and METEOR show a decreasing trend of

Type-I error as the metric differences get larger. In this tendency,

BLEU differs from the rest of the metrics (which are very similar to

METEOR), having a relatively low rate of Type-I errors whenmetric

differences are small. In fact, for the bins (0, 2] and (2, 5], we observe

that it makes no errors at all. If we refer to Table 4, the reason

behind this becomes apparent; BLEU only reports 14/ 3,530 pairs to

have a significant difference. This is consistent with the other bins,

wherein BLEU marks pairs of approaches as being significantly

different very conservatively, and consequently has a high Type-II

error instead. All the other metrics show a moderate but non-trivial

incidence of Type-I error when the metric difference is less than 2

points, ranging from 8% for chrF to 27.6% for ROUGE-4. This error

rate drops sharply as metric differences get larger than 2 points, and

disappears completely above 10 points. BERTScore, chrF, METEOR,

ROUGE-3 and ROUGE-4 cease to commit Type-I errors when the

metric difference becomes larger than 10 points, whereas ROUGE-1,

ROUGE-L and ROUGE-W continue to have the same errors, but at

much lower rates.

Beyond Type-I and Type-II error rates, we also want to look at the

overall agreement between metric decisions and human decisions

at different bins. It is possible for both metrics and human assessors

to assess two systems to be significantly different, but in opposite

directions, i.e., metrics might rate 𝑆𝐴 to be better than 𝑆𝐵 , while

humans rate 𝑆𝐵 to be better than 𝑆𝐴 . Table 5 reports disagreement

rates, which consists of Type-I and Type-II errors, along with any

instances where the metric scores disagree with human assessment

regardless of statistical significance. Here, we observe a similar

trend as the Type-I and -II errors. When metric differences are less

than 2 points, all metrics have an overall disagreement rate of at

least 62.5%.Whenwemove on to higher bins, all metrics experience

significant drops in their overall disagreement rates. In the third

bin, (5, 10], BLEU is the only metric with an overall disagreement

rate of over 5%. BLEU deviates significantly from the other metrics

considered in this bin; its overall disagreement rate remains high

at 40.3%. For the bins (10,15] and (20, 100], these metrics largely

agree with human assessment. Overall, METEOR shows the lowest

levels of disagreements across the bins.

From the patterns of Type-I and Type-II errors, as well as the

overall disagreement rate, a clear picture emerges: when the met-

ric difference between two approaches are less than 2 points, no

metric is able to discriminate between two systems in a manner

consistent with human ratings. At this level of metric difference,

metrics are 1) not sensitive to changes in summarization quality

that are otherwise perceived by human assessors and 2) falsely re-

port significant differences in quality when none exists. In addition,

even when the metrics correctly report a significant difference in

quality, the direction of this difference might not align with human

assessors. It is only when metric differences get larger than 2-5

points (depending on the metric), that metrics are able to reliably

discriminate between two summarization approaches in agreement

with human assessors.

RQ1 takeaway: Automatic evaluation metrics are not able to

accurately capture differences in summarization quality between

two approaches when the metric difference is small (≤ 2 points).

METEOR, BERTScore and chrF perform the best in terms of

Type-I and Type-II error rate. BLEU has the highest error rates

overall.

5.3 RQ2: Are summary-level metrics able to
reflect human quality assessments of
generated summaries?

Results of the calculation of the correlation between human assess-

ment and summary level metrics using Kendall’s Tau formulation

are reported in Table 6. Similar to the results for MT tasks [33],

the correlation between human assessment scores and sentence-

level metrics are low for all metrics, between 0.1 for ROUGE-4 and

0.47 for BERTScore. This indicates that at a sentence level, none of

the considered metrics are suitable proxies for human assessment,

including ratings of fluency, conciseness, and content adequacy.

Note that the Kendall’s Tau formulation used in WMT 2019 [33],

disregards ties in both metric scores and human assessment scores.

For our dataset, the several metrics have a right-skewed distribution.

For example, ROUGE-4 rates 89% of summaries with a score of 0.

While this is not a problem for large scale datasets, for smaller

datasets, such as the one we use here, this can potentially bias the

correlation towards metrics that produce a lot of ties, since they are

Reassessing Automatic Evaluation Metrics for Code Summarization Tasks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Corpus-level Error Rates for Automatic Metrics.

Delta range: [0.0, 2.0] Delta range: (2.0, 5.0] Delta range: (5.0, 10.0] Delta range: (10.0, 15.0]

Type I Error Type II Error Type I Error Type II Error Type I Error Type II Error Type I Error Type II Error

Rate Gr. Size Rate Gr. Size Rate Gr. Size Rate Gr. Size Rate Gr. Size Rate Gr. Size Rate Gr. Size Rate Gr. Size

BERTScore 14.5% 392 69.4% 1164 8.2% 1152 77.8% 18 1.5% 1303 0.0% 741

BLEU 0% 0 79.25% 2285 0.0% 14 98.0% 1231 7.6% 409 100% 224 0% 1087

chrF 8.0% 513 71.4% 1503 2.2% 1098 100.0% 1 4.5% 778 0.0% 718

METEOR 14.8% 899 76.2% 1494 1.3% 1341 2.7% 859 0.0% 763

ROUGE-1 12.5% 375 72.3% 1477 4.5% 793 57.1% 7 1.6% 1108 7.1% 241

ROUGE-2 13.6% 221 78.4% 1582 9.7% 1237 86.7% 30 3.7% 845 0.4% 744

ROUGE-3 18.4% 174 80.3% 1699 8.5% 1374 82.9% 70 3.3% 910 0.0% 1010

ROUGE-4 27.6% 445 82.5% 1833 3.5% 1493 100.0% 3 1.7% 1151 0.0% 404

ROUGE-L 11.4% 395 72.7% 1548 3.2% 877 100.0% 2 2.4% 959 4.0% 300

ROUGE-W 11.4% 395 72.7% 1548 3.2% 877 100.0% 2 2.4% 959 4.0% 300

Table 5: Corpus-level Disagreement Rate for Automatic Metrics.

Delta: [0.0, 2.0] Delta: (2.0, 5.0] Delta: (5.0, 10.0] Delta: (10.0, 15.0] Delta: (15.0, 20.0] Delta: (20.0, 100.0]

D. Rate Gr. Size D. Rate Gr. Size D. Rate Gr. Size D. Rate Gr. Size D. Rate Gr. Size D. Rate Gr. Size

BERTScore 66.6% 1556 9.4% 1170 1.5% 1303 741 586

BLEU 89% 2285 97.5% 1245 40.3% 633 1087

chrF 65.7% 2016 2.6% 1099 4.5% 778 718 745

METEOR 62.5% 2393 1.3% 1341 2.7% 859 763

ROUGE-1 72.1% 1852 5.1% 800 1.6% 1108 7.1% 241 696 659

ROUGE-2 80.7% 1804 17.8% 1267 3.7% 845 0.4% 744 696

ROUGE-3 83.7% 1878 18.4% 1444 3.3% 910 1010 114

ROUGE-4 80.8% 2305 5.1% 1496 1.7% 1151 404

ROUGE-L 71.5% 1943 3.5% 879 2.4% 959 4.0% 300 783 492

ROUGE-W 71.5% 1943 3.5% 879 2.4% 959 4.0% 300 783 492

Figure 4: Sentence-level comparisons: BERTScore vs DA.

evaluated on a smaller subset of the data than metrics that don’t

produce many ties. Hence, we use a version of the formulation that

penalizes ties.

Following the results from RQ1, correlations alone do not provide

enough information into the nature of the relationship between a

metric scores and human quality assessments. We looked at the

agreement between DARR scores and summary-level metrics, utiliz-

ing the bins used in RQ1, but nowwith metric differences calculated

Table 6: Kendall’s 𝜏 for summary-level metrics.

Overal DA Conciseness Content Adequacy Fluency

BERTScore 0.475 0.362 0.387 0.294
chrF 0.451 0.312 0.401 0.210

METEOR 0.467 0.336 0.398 0.201

ROUGE-1 0.446 0.334 0.376 0.196

ROUGE-2 0.302 0.206 0.245 0.123

ROUGE-3 0.191 0.127 0.161 0.075

ROUGE-4 0.110 0.064 0.092 0.034

ROUGE-L 0.435 0.327 0.362 0.197

ROUGE-W 0.441 0.327 0.371 0.198

sentBLEU 0.240 0.302 0.167 0.210

at the summary-level. We plot these results for BERTScore in Fig-

ure 4.

We observe that BERTScore score distribution is heavily right-

skewed, with the majority of summaries with scores of 0. For sum-

mary level metrics with high correlations to DARR scores, we would

expect to see the proportion of concordant to discordant pairs in-

crease as the metric score increases. For BERTScore, there is no

clear trend. This explains the low Kendall’s Tau correlation.

Summary level metrics can potentially provide an advantage

over corpus level metrics through fine-grained traceability of the

performance of a summarization approach. However, results show

that current summary-level metrics cannot be used as reliable prox-

ies for human evaluations at the level of individual summaries.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

RQ2 takeaway: Summary-level metrics do not correlate with

human assessment for source code summaries and cannot be

used as reliable proxies for human evaluations.

6 IMPLICATIONS
The use of MT techniques for the purpose of code summarization

is relatively new but growing rapidly, with the first paper being

published in 2015 and at least 30 novel approaches have been pub-

lished since then. Results of this paper reflect that the rapid growth

in the domain might be at the expense of the reliability of metrics

used to evaluate novel approaches. For instance, from the 30 pa-

pers that declared state-of-the-art summarization techniques in the

past 5 years [2–5, 8–10, 12, 17–21, 23–25, 28, 31, 35, 39, 48, 54–

57, 59–61, 65, 66], 15 declare metrics improvements in the 0-2

range [2, 3, 9, 10, 12, 20, 24, 25, 28, 31, 48, 57, 60, 65, 66]. At these

levels of differences, we show that evaluation metrics are not re-

liable, and do not guarantee an actual improvement in summa-

rization quality as judged by human assessors. Out of these, only

5 [20, 23, 39, 55, 56] perform human evaluations, none of which fol-

low a systematic method to compare the competing summarization

approaches: human evaluations are either conducted on a biased

sample (methods chosen among the best performing summaries)

or summaries are compared only to the reference and not to a

competing model. Based on our findings, we provide the following

recommendations for practitioners:

Automatic Metric Recommendations:

• Use significance tests to establish whether changes in metric

scores represent systematic improvements in model perfor-

mance. For metrics that provide summary level scores that

can be aggregated to produce a corpus level score, standard

paired t-test, or a Wilcoxon Sign-Rank test can be utilized

to check for differences in performance. When this is not

possible, randomized significance tests such as approximate

randomization and paired-bootstrap resampling can be used

to determine significance. A detailed methodology is out-

lined in Dror [11] and Graham et al. [15].

• Differences in automatic metric scores within 2 points do

not guarantee a perceptible difference in human assessment,

and this holds for all metrics evaluated in this work. Small

changes in evaluation metrics should not be used as the

sole basis to draw important empirical conclusions, when

possible, human evaluation should be used to strengthen

performance claims.

• METEOR and chrF are more reliable indicators of human

judgement than corpus level BLEU, especially for metric

differences larger than 2 points. The community should re-

consider the use of BLEU as the standard evaluation metric

for code summarization.

• The automatic evaluation metrics we consider are not reli-

able at a summary level. This result is consistent with ma-

chine translation literature. While these metrics might be

useful at a summary level when supplemented with manual

analysis, they are not a reliable proxy for human judgment

for individual examples on their own. However, these met-

rics can still be used if they are aggregated across the entire

corpus.

Human Evaluation:

• When human evaluation is performed, it must be conducted

on a representative sample of summaries generated by the

approach being evaluated. This ensures that the evaluation

will provide an unbiased estimate of how the approachwould

perform on the rest of the dataset.

• For each summary, we recommend collecting 1) a summary

of the code snippet written by each human annotator that

will serve as quality control, 2) human evaluations on a

continuous scale (DA scores) for the automatic summaries

generated by the compared approaches, and 3) at least 3

evaluations per snippet.

6.1 Threats to Validity
Results in the paper are dependent on the considered datasets; a

different dataset might yield different results. We chose this dataset

provided by Haque et al. [18] as 1) this is the only dataset that

provides a large set of pre-trained models which uniformly trains

several models on the same dataset, and 2) several of these models

have shown state-of-the-art performance when originally proposed.

We acknowledge the existence of other models that might perform

better, however, the focus of this paper is to evaluate automatic

evaluation metrics and not to establish the current state-of-the-art.

We create synthetic approaches by degrading and improving the

summaries of the original approaches in our dataset, and conse-

quently, our results could vary were we to perform a larger human

study with more models. However, gathering assessments for such

a large number of real approaches would be prohibitive. To mitigate

this threat, we parameterize the creation of synthetic approaches

to represent different levels of improvements over the original ap-

proach as described earlier.

Another threat to the validity of our results comes from the

evaluations of the human annotators.We ask participants to provide

summaries of the snippets that they are evaluating and use those

summaries for quality control. We also perform standard outlier

detection to identify and potentially remove abnormal data points.

7 CONCLUSION
This work provides a critical evaluation of the applicability and

interpretation of automatic metrics as evaluation techniques for

code summarization tasks. To the best of our knowledge, this is the

first empirical study to investigate the degree to which automatic

evaluationmetrics reflect human evaluation in the domain of source

code summarization.

Automatic metrics are commonly used to compare the perfor-

mance of two approaches, and in this work we investigate to what

extent the difference in metric scores reflect human judgments.

Results show that marginal differences (0-2 points) in metric scores

between two approaches do not guarantee human perceivable im-

provement, and make an error in up to 70% of cases on average. As

a result, small changes in evaluation metrics should not be used

as the sole basis to draw important empirical conclusions about

performance improvements, and should be supported with human

evaluation. Our findings indicate the community should reconsider

BLEU as the standard metric for evaluation, in lieu of more reliable

metrics such as METEOR and chrF.

Reassessing Automatic Evaluation Metrics for Code Summarization Tasks ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] Alireza Aghamohammadi, Maliheh Izadi, and Abbas Heydarnoori. 2020. Gener-

ating summaries for methods of event-driven programs: An Android case study.

Journal of Systems and Software 170 (2020), 110800.
[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

Transformer-based Approach for Source Code Summarization. In ACL (short).
[3] Abdulaziz Alhefdhi, Hoa Khanh Dam, Hideaki Hata, and Aditya Ghose. 2018.

Generating pseudo-code from source code using deep learning. In 2018 25th
Australasian Software Engineering Conference (ASWEC). IEEE, 21–25.

[4] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-

tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091–2100.

[5] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-

erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

[6] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for

MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[7] Boxing Chen and Colin Cherry. 2014. A systematic comparison of smoothing

techniques for sentence-level bleu. In Proceedings of the Ninth Workshop on
Statistical Machine Translation. 362–367.

[8] Minghao Chen and Xiaojun Wan. 2019. Neural Comment Generation for Source

Code with Auxiliary Code Classification Task. In 2019 26th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 522–529.

[9] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and

summarization of source code. In Proceedings of the International Conference on
Automated Software Engineering (ASE). IEEE, 826–831.

[10] YunSeok Choi, Suah Kim, and Jee-Hyong Lee. 2020. Source Code Summariza-

tion Using Attention-Based Keyword Memory Networks. In Proceedings of the
International Conference on Big Data and Smart Computing (BigComp). IEEE,
564–570.

[11] Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. 2018. The hitch-

hiker’s guide to testing statistical significance in natural language processing.

In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 1383–1392.

[12] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2018. Structured

Neural Summarization. In International Conference on Learning Representations.
[13] Yvette Graham, Timothy Baldwin, and Nitika Mathur. 2015. Accurate evalu-

ation of segment-level machine translation metrics. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 1183–1191.

[14] Yvette Graham, Timothy Baldwin, Alistair Moffat, and Justin Zobel. 2013. Con-

tinuous measurement scales in human evaluation of machine translation. In

Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse. 33–41.

[15] Yvette Graham, Nitika Mathur, and Timothy Baldwin. 2014. Randomized sig-

nificance tests in machine translation. In Proceedings of the Ninth Workshop on
Statistical Machine Translation. 266–274.

[16] David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to

Comment “Translation”: Data, Metrics, Baselining & Evaluation. In Proceedings of
the International Conference on Automated Software Engineering (ASE). 746–757.

[17] Tjalling Haije, Bachelor Opleiding Kunstmatige Intelligentie, E Gavves, and H

Heuer. 2016. Automatic comment generation using a neural translation model.

Inf. Softw. Technol. 55, 3 (2016), 258–268.
[18] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Im-

proved Automatic Summarization of Subroutines via Attention to File Context.

In Proceedings of the Working Conference on Mining Software Repositories (MSR).
300–310.

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment gener-

ation. In Proceedings of the International Conference on Program Comprehension
(ICPC). IEEE, 200–20010.

[20] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment

generation with hybrid lexical and syntactical information. Empirical Software
Engineering Journal (EMSE) 25, 3 (2020), 2179–2217.

[21] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing

source code with transferred api knowledge.(2018). In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence (IJCAI), Vol. 19.
2269–2275.

[22] Yuan Huang, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin Zheng,

Xiapu Luo, Nan Jia, Xinyu Hu, and Xiaocong Zhou. 2020. Towards automati-

cally generating block comments for code snippets. Information and Software
Technology 127 (2020), 106373.

[23] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.

Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073–2083.

[24] Alexander LeClair, SakibHaque, LinfgeiWu, and CollinMcMillan. 2020. Improved

code summarization via a graph neural network. In Proceedings of the International
Conference on Program Comprehension (ICPC).

[25] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model

for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[26] Alexander LeClair and Collin McMillan. 2019. Recommendations for datasets for

source code summarization. arXiv preprint arXiv:1904.02660 (2019).
[27] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCom-

menter: a deep code comment generation tool with hybrid lexical and syntactical

information. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 1571–1575.

[28] Yuding Liang and Kenny Zhu. 2018. Automatic generation of text descriptive

comments for code blocks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[29] R. Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 140 (1932), 44–53.

[30] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.

In Text summarization branches out. 74–81.
[31] Bohong Liu, Tao Wang, Xunhui Zhang, Qiang Fan, Gang Yin, and Jinsheng Deng.

2019. A Neural-Network based Code Summarization Approach by Using Source

Code and its Call Dependencies. In Proceedings of the 11th Asia-Pacific Symposium
on Internetware. 1–10.

[32] Mingwei Liu, Xin Peng, Xiujie Meng, Huanjun Xu, Shuangshuang Xing, Xin

Wang, Yang Liu, and Gang Lv. 2020. Source Code based On-demand Class

Documentation Generation. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 864–865.

[33] Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette Graham. 2019. Results of

the WMT19 metrics shared task: Segment-level and strong MT systems pose

big challenges. In Proceedings of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1). 62–90.

[34] Nitika Mathur, Tim Baldwin, and Trevor Cohn. 2020. Tangled up in BLEU:

Reevaluating the Evaluation of Automatic Machine Translation Evaluation Met-

rics. arXiv preprint arXiv:2006.06264 (2020).
[35] Sergey Matskevich and Colin S Gordon. 2018. Generating comments from source

code with CCGs. In Proceedings of the 4th ACM SIGSOFT International Workshop
on NLP for Software Engineering. 26–29.

[36] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-

eration via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension. 279–290.

[37] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker. 2013. JSummarizer: An

automatic generator of natural language summaries for Java classes. In Interna-
tional Conference on Program Comprehension (ICPC). 230–232.

[38] Najam Nazar, Yan Hu, and He Jiang. 2016. Summarizing software artifacts:

A literature review. Journal of Computer Science and Technology 31, 5 (2016),

883–909.

[39] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code

from source code using statistical machine translation (t). In Proceedings of the
International Conference on Automated Software Engineering (ASE). IEEE, 574–584.

[40] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[41] Maja Popović. 2015. chrF: character n-gram F-score for automatic MT evaluation.

In Proceedings of the Tenth Workshop on Statistical Machine Translation. 392–395.
[42] Matt Post. 2018. A call for clarity in reporting BLEU scores. arXiv preprint

arXiv:1804.08771 (2018).
[43] Ehud Reiter. 2018. A Structured Review of the Validity of BLEU. Computational

Linguistics 44, 3 (2018), 393–401.
[44] Stefan Riezler and John T Maxwell III. 2005. On some pitfalls in automatic

evaluation and significance testing for MT. In Proceedings of the ACL workshop
on intrinsic and extrinsic evaluation measures for machine translation and/or
summarization. 57–64.

[45] Peter C. Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey.

2014. Peer Review on Open Source Software Projects: Parameters, Statistical

Models, and Theory. ACM Transactions on Software Engineering and Methodology
(TOSEM) (2014), To appear.

[46] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Online Replica-
tion Package. https://github.com/devjeetr/Re-assessing-automatic-evaluation-

metrics-for-source-code-summarization-tasks

[47] Devjeet Roy, Ziyi Zhang, Venera Arnaoudova, A Panichella, Sebastiano Panichella,

Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-Enhancer: Improving

the Readability of Automatically Generated Tests. (2020).

[48] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto, and

Tadayuki Matsumura. 2019. Automatic source code summarization with extended

tree-lstm. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,

https://github.com/devjeetr/Re-assessing-automatic-evaluation-metrics-for-source-code-summarization-tasks
https://github.com/devjeetr/Re-assessing-automatic-evaluation-metrics-for-source-code-summarization-tasks

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova

1–8.

[49] Xingyi Song, Trevor Cohn, and Lucia Specia. 2013. BLEU deconstructed: De-

signing a better MT evaluation metric. International Journal of Computational
Linguistics and Applications 4, 2 (2013), 29–44.

[50] Xiaotao Song, Hailong Sun, XuWang, and Jiafei Yan. 2019. A survey of automatic

generation of source code comments: Algorithms and techniques. IEEE Access 7
(2019), 111411–111428.

[51] Peter Stanchev, Weiyue Wang, and Hermann Ney. 2020. Towards a Better Evalua-

tion of Metrics for Machine Translation. In Proceedings of the Fifth Conference on
Machine Translation. Association for Computational Linguistics, Online, 928–933.

[52] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,Westley

Weimer, Kevin Leach, and Yu Huang. 2020. A Human Study of Comprehension

and Code Summarization. In Proceedings of the International Conference on Pro-
gram Comprehension (ICPC). 2–13.

[53] Akiyoshi Takahashi, Hiromitsu Shiina, and Nobuyuki Kobayashi. 2019. Au-

tomatic Generation of Program Comments Based on Problem Statements for

Computational Thinking. In 2019 8th International Congress on Advanced Applied
Informatics (IIAI-AAI). IEEE, 629–634.

[54] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and

Philip S Yu. 2018. Improving automatic source code summarization via deep rein-

forcement learning. In Proceedings of the International Conference on Automated
Software Engineering (ASE). 397–407.

[55] Ruyun Wang, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu. 2020. Fret:

Functional Reinforced Transformer With BERT for Code Summarization. IEEE
Access 8 (2020), 135591–135604.

[56] Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip

Yu, and Guandong Xu. 2020. Reinforcement-Learning-Guided Source Code Sum-

marization via Hierarchical Attention. IEEE Transactions on Software Engineering
(TSE) (2020).

[57] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a

dual task of code summarization. In Advances in Neural Information Processing

Systems. 6563–6573.
[58] Kurt D. Welker, Paul W. Oman, and Gerald G. Atkinson. 1997. Development

and Application of an Automated Source Code Maintainability Index. Journal of
Software Maintenance: Research and Practice 9, 3 (May 1997), 127–159.

[59] Shaofeng Xu and Yun Xiong. 2018. Automatic Generation of Pseudocode with At-

tention Seq2seq Model. In 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 711–712.

[60] Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang.

2020. Leveraging Code Generation to Improve Code Retrieval and Summarization

via Dual Learning. In Proceedings of The Web Conference (WWW). 2309–2319.
[61] Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao.

2020. Towards Context-Aware Code Comment Generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
3938–3947.

[62] Lingbin Zeng, Xunhui Zhang, Tao Wang, Xiao Li, Jie Yu, and Huaimin Wang.

2018. Improving code summarization by combining deep learning and empir-

ical knowledge (S).. In Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE). 566–565.

[63] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.

Retrieval-based neural source code summarization. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE).

[64] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav

Artzi. 2019. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675 (2019).

[65] Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. 2019. Aug-

menting Java method comments generation with context information based on

neural networks. Journal of Systems and Software 156 (2019), 328–340.
[66] Ziyi Zhou, Huiqun Yu, andGuisheng Fan. 2020. Effective approaches to combining

lexical and syntactical information for code summarization. Software: Practice
and Experience 50, 12 (2020), 2313–2336.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Evaluation of Automatic Metrics in Machine Translation
	2.2 Evaluation of Automatic Metrics in Code Summarization

	3 Study Design and Setup
	3.1 Research Questions
	3.2 Dataset
	3.3 Survey Design
	3.4 Human Annotators
	3.5 Automatic Metrics
	3.6 Sampling and Data Preprocessing

	4 Analysis Method
	4.1 Human Assessment of the Quality of Summaries
	4.2 RQ Analysis Method

	5 Results
	5.1 RQ0: Is there a significant difference in the corpus level metrics of different models?
	5.2 RQ1: Do commonly used corpus-level metrics reflect human quality assessments of generated summaries?
	5.3 RQ2: Are summary-level metrics able to reflect human quality assessments of generated summaries?

	6 Implications
	6.1 Threats to Validity

	7 Conclusion
	References

