ICPC '19: 27th IEEE/ACM International Conference on Program Comprehension, May 24--25, 2019

Improving Source Code Readability:
Theory and Practice

Sarah Fakhoury Devjeet Roy Sk. Adnan Hassan Venera Arnaoudova

Washington State University, USA

O

WASHINGTON STATE
UNIVERSITY

Code Quality Metrics

* Almost all software projects are
evaluated for code quality

* Researchers have developed several
metrics to measure code quality

* Complexity
Maintainability

* Tools rely on these metrics to
recommend quality improvements

I® |

N %IE

Quality Metrics in
Practice

Pantiuchina et al. ICSME’18

Investigated if developers
perception of quality in
practice aligns with metrics
defined in literature

Often, State-of-the-art

metrics are unable to capture

quality improvements

Improving Code:
The (Mis)perception of Quality Metrics

Jevgenija Pantiuchina, Michele Lanza, Gabriele Bavota
REVEAL @ Software Institute, Universita della Svizzera italiana (USI), Lugano, Switzerland
jevgenija.pantiuchina | michele.lanza | gabriele.bavota@usi.ch

Abstract—Code quality metrics are widely used to identify
design flaws (e.g., code smells) as well as to act as fitness functions
for refactoring recommenders. Both these applications imply
a strong assumption: quality metrics are able to assess code
quality as perceived by developers. Indeed, code smell detectors
and refactoring recommenders should be able to identify design
flaws/recommend refactorings that are meaningful from the
developer’s point-of-view. While such an assumption might look
reasonable, there is limited empirical evidence supporting it.

We aim at bridging this gap by empirically investigating
whether quality metrics are able to capture code quality im-
provement as perceived by developers. While previous studies
surveyed developers to investigate whether metrics align with
their perception of code quality, we mine commits in which
developers clearly state in the commit message their aim of
improving one of four quality attributes: cohesion, coupling, code
readability, and code complexity. Then, we use state-of-the-art
metrics to assess the change brought by each of those commits
to the specific quality attribute it targets. We found that, more
often than not the considered quality metrics were not able to

P the quality imp as perceived by developers (e.g.,
the developer states “improved the cohesion of class C, but no
quality metric captures such an improvement).

Index Terms—code quality; metrics; empirical study

and we investigate four code quality attributes (i.e., cohesion,
coupling, readability, and complexity).

Instead of surveying software developers, we analyzed real
changes they implemented with the stated purpose of improving
one of the four considered quality attributes.

We mined over 300M commits performed on GitHub and
used a simple “keyword matching mechanism” to identify
commit notes reporting one of the following four words:
cohesion, coupling, readability, or complexity. Then, we ex-
cluded commits performed on non-Java systems, and manually
analyzed the remaining ones with the goal of identifying those
in which developers state in the commit note the intention
to improve the corresponding quality attribute. Examples
of those commits are: “Removed write() method — higher
cohesion” and “Refactoring TexasHoldEmHandFactory to
".A final set of 1,282 commits

reduce cyclomatic complexit
was considered in our study.

For each of the selected commits ¢, we extracted the list of
files F' impacted by ¢ before (Fj, .,.) and after (F,f.,) ¢'s
changes. Then, we use quality metrics designed to assess the

quality attribute ¢ aims at improving (e.g., for class cohesion
Af Cobocion of Mathode 1191 and tha

ss10_ommlait tha T aale

Quality Metrics in Practice

Metrics are unable to capture majority of instances where
improvements where made by developers in practice

Numbers as high as as 85% accuracy are reported for
evaluation of metrics that are defined in literature [1]

~ Discrepancy between results from research
o and the interpretation of metrics in practice
(‘l

[1] Simone Scalabrino, Mario Linares-Va ‘squez, Rocco Oliveto, and Denys Poshyvanyk. A comprehensive model for code readability. Journal of Software:
Evolution and Process, 30(6):e1958, 2018.

Code Quality: Readability

o Fundamental part of software maintenance
o Impacts comprehension
o Time-intensive

o Multiple models have been defined to measure readability

o Consider different aspects of the source code (structural features, lexical,
etc.)

o Usually models are evaluated by surveying developers

Readability Models

Dornin 2012

Considers visual, spatial,
and linguistic aspects of
the source code

Code Snippets evaluated
by surveying 5,000
participants

A General Software Readability Model

Jonathan Dorn
Department of Computer Science
University of Virginia
Charlottesville, Virginia
jadSju@virginia.edu

Abstract—We present a generalizable formal model of soft-
ware readability based on a human study of 5000 participants.
Readability is fund: I to mai ¢, but remains poorly
understood. Previous models focused on symbol counts of small
code snippets. By contrast, we approach code as read on screens
by humans and propose to analyze visual, spatial and linguistic
features, including structural patterns, sizes of code blocks, and
verbal identifier content. We construct a readability metric based
on these notions and show that it agrees with human judgments
as well as they agree with each other and better than previous
work. We identify universal features of readability and language-
or experience-specific ones. Our metric also correlates with an
external notion of defect density. We address multiple program-
ming languages and different length samples, and evaluate using
an order of itude more partici| than previous work, all
suggesting our model is more likely to generalize.

[. INTRODUCTION

Modern software developers spend more time maintaining
and evolving existing software than writing new code [1], [2],
[3]. Software readability, a fundamental notion related to the
comprehension of text, is critical to software maintenance:
reading code is a necessary first step toward maintaining it.

Much research, both recent and established, has argued that
readability plays a large role in software maintenance. A well-
known example is Knuth, who viewed readability as essential
to his notion of Literate Programming [4]. He argued that a

Readability Index [10] and Flesch-Kincaid Grade Level [11]
are commonly used in commercial software and policies.
All are based on a few simple measurements, such as the
lengths of words and sentences. For example, Flesch-Kincaid
is integrated into popular editors such as Microsoft Word and
has become a government standard, with the US Department
of Defense requiring internal and external documents to have
a Flesch readability grade of 10 or below (DOD MIL-M-
38784B). In the domain of software, formal metrics for
readability are well-established in particular domains such as
hypertext [12].

By contrast, general descriptive models of overall software
readability are relatively recent, first proposed by Buse er
al. [13] and refined by Posnett er al. [14]. Such models are
not coding standards (cf. [15]) but are based on combinations
of surface-level syntactic features such as operator counts or
line lengths, aim to agree with human judgments, and have
been found to correlate with external notions of software
quality [16]. Such software readability models do not attempt
to describe programmatic complexity (cf. [17]), which derives
from system requirements and algorithms, but instead focus
on readability as a controllable accidental complexity [18].

Despite the advantages of a formal notion of software
readability, previous readability metrics do not adequately gen-
eralize. They are based on small (typically 7-line) snippets of

State of the art
Readability Models

Scalabrino et al. ICPC’16

Model based on metrics
capturing the quality of
source code lexicon

Evaluated on snippets
from Dorn’s data set

Improving Code Readability Models
with Textual Features

Simone Scalabrino*, Mario Linares-Vésquez$, Denys Poshyvanyk’ and Rocco Oliveto*
*University of Molise, Pesche (IS), Ttaly
$The College of William and Mary, Williamsburg, Virginia, USA

Ab.llracl—‘.odc reading is one of the most frl:quenl activities
in before impl ges, it is
necessary to fully understand source code often written by other
developers. Thus, rmdablllty is a crucial aspect ol source code
that may significantl prog comp ion effort.
In general, model usl:d to esti ftware readability take into
account only structural aspects of source code, e.g., line length
and a number of comments. However, source code is a particular
form of text; therefore, a code readability model should not ignore
the textual aspects of source code encapsulated in identifiers and
comments. In this paper, we propose a set of textual features
aimed at ing code dability. We eval d the p P d
textual features on 600 code snipp Iy lu: 1 (in
terms of readability) by 5K+ people. The mults demonstrate
that the prnposcd features complemont classic structural featuns
when predicting code bility judg) ly, a
code readability model based on a richer set of l'caturv:s, lncllulmg
the ones proposed in this paper, achieves a significantly higher
accuracy as compared to all of the state-of-the-art readability
models.

I. INTRODUCTION

Beautiful, Clean, Great, or Good code [1], |2], [3] are
common expressions that describe the type of code that soft-
ware developers expect/hope to write or read. In fact, having
“great/clean/good/beautiful code” is more important during
software evolution and maintenance tasks, because developers

source code has been constructed and how it looks to the
developers; the models mostly rely on structural properties of
the source code (e.g., number of identifiers). However, despite
a plethora of rescarch that has demonstrated the impact of
source code lexicon on program understanding [11], [12], [13],
|14], 115], [16], [17], state-of-the-art code readability models
are still syntactic in nature and do not consider textual features
that reflect the quality of source code lexicon.

Under the hypothesis that source code readability should
be captured using both syntactic and textual code features,
in this paper we present a set of textual features that can be
extracted from source code to improve the accuracy of state-
of-the-art code readability models. Unstructured information
embedded in the source code refiects to a reasonable degree
the concepts of the problem and solution domains, as well as
the computational logic of the source code. Therefore, textual
features capture the domain semantics and add a new layer
of semantic information to the source code, in addition to the
programming language semantics. To validate the hypothesis
and measure the effectiveness of the proposed features, we
performed a two-fold empirical study: (i) we measured to what
extent the proposed textual features complement the structural
ones proposed in the literature for predicting code readability;
and (ii) we computed the accuracy of a readability model based

A comprehensive
model of readability

Scalabrino et al. JSEP 2017
extended their original work

Combined features from
multiple models: Scalabrino,
Dorn, Buse & Weimer, Posnett

Model that considers all
features outperforms the state-
of-the-art models on their own

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2017; 00:1-29
Published online in Wiley InterScience (www.interscience.wiley.com). DOL: 10.1002/smr

A Comprehensive Model for Code Readability

Simone Scalabrino!, Mario Linares-Visquez2, Rocco Oliveto', and Denys Poshyvanyk®

! University of Molise, Pesche (1), Italy
2 Universidad de los Andes, Bogotd, Colombia
3 The College of William and Mary, Williamsburg, Virginia, USA

SUMMARY

Unreadable code could compromise program comprehension and it could cause the introduction of bugs.
Code consists of mostly natural language text, both in identifiers and comments, and it is a particular form of
text. Nevertheless, the models proposed to estimate code readability take into account only structural aspects
and visual nuances of source code, such as line length and alignment of characters. In this paper we extend
our previous work in which we use textual features to improve code readability models. We introduce two
new textual features and we reassess the readability prediction power of readability models on more than
600 code snippets manually evaluated, in terms of readability, by 5K+ people. We also replicate a study
by Buse and Weimer on the correlation between readability and FindBugs warnings, evaluating different
models on 20 software systems, for a total of 3M lines of code. The results demonstrate that (i) textual
features complement other features, and (ii) a model containing all the features, achieves a significantly
higher accuracy as compared to all the other state-of-the-art models. Also, readability estimation resulting
from a more accurate model, i.e., the combined model, is able to predict more accurately FindBugs warnings.
Copyright © 2017 John Wiley & Sons, Ltd.

Readability Metrics in Practice

Models are evaluated by surveying external developers outside of a
development environment

Could this be why there exists a discrepancy between results from
research and the interpretation of metrics in practice?

Research
Question #1

Are state-of-the-art readability models able to
capture readability improvements in practice?

10

Readability Models Used

Scalabrino’s Model. Uses measures metrics that measure the
guality of source code lexicon as a proxy for readability.[1]

Dorn’s Model. Uses visual, spatial, alignment and linguistic aspects
of the source code. [2]

Combined Model. Proposed by Scalabrino et al. as a combination of
multiple state of the art readability models considering both
linguistic and structural aspects of the source code. [1]

[1] Simone Scalabrino, Mario Linares-Va ‘squez, Rocco Oliveto, and Denys Poshyvanyk. A comprehensive model for code readability. Journal of Software:
Evolution and Process, 30(6):e1958, 2018.
[2] Jonathan Dorn. A general software readability model. Master’s thesis, University of Virginia, 2012.

Methodology: Data Collection

e 63 engineered open source Java projects from GitHub

e Mined 548 commits making readability improvements,
using keyword matching (readable, easier to read... etc)

e Saved version of file before readability improvement was
made and after

cleaned up comments and made file more readable
P master (£15620) O version-3.1.0 ... sual-Studio-2017-Preview-1-Version-15.4

v kuhlenh committed on Dec 5, 2016

Methodology: Data Collection

e Mined commits that do not contain readability
improvements from the same projects

e Manually validated to ensure the commit described
readability improvements

e Multiple changes in one commit are manually
detangled

Make code easier to read and improve performance

P master 0 8.1.1 8.1.0
u . -
1‘ spoonerWeb committed on Sep 18, 2018

13

Models detect 35.7% - 40.7% of
files have readability
improvements

Average 72% agreement
between models

None of the models reported
statistically significant changes in
readability scores

Validating the results found by
Pantiuchina et al.

Score

10 A1

0.8 4

0.6 4

044

0.2 1

0.0 1

T

‘ File Version
[Before
B After

Coml'Jined

Scala'brino
Readability Model

T
Dorn

14

Improve readability of RegistryCSSPropertyHandlerProvider

No functional change, only reformatting and grouped code into a new
internal method to make it readable

Change-Id: Ibd89112b9boc26c9e24a0bb4a78e68759297231a
Signed-off-by: Lars Vogel <Lars.Vogel@vogella.com>

¥ master > Y20190320-2200 ... 120180613-0300

H vogella committed on May 16, 2018

All models register slight decrease in readability

15

Open Questions

Do we need models that are more sensitive to
types of changes made in practice?

If so, what metrics can capture these readability
improvements made in practice?

16

Research
Question #2

Which source code metrics are able
capture improvement in the readability
of source code, as perceived by
developers in practice?

17

Static Analysis Tools: Source Meter

® Collects a variety of source code metrics
o Cohesion

Complexity

Coupling

Documentation

Inheritance

Size

O O O O O

[1] https://www.sourcemeter.com/

https://www.sourcemeter.com/

Results: Source Meter

Readability Commits

Non-Readability Commits

Category Metric
P-Value % Increase! % Decreasel |% Equal | P-Value % Increase! % Decrease) |% Equal
Complexity metrics Halstead Difficulty 0.24 28.12 26.72 45.14 | 0.00 (*) 34.77 26.40 38.74
Halstead Effort 0.00 (*) 28.40 30.08 38.34 | 0.00 (%) 37.58 26.32 31.54
Halstead Program Vocabulary 0.85 28.13 25.22 46.65 | 0.00 (%) 36.09 22.52 41.31
Maintainability Index 0.03 (*) 29.52 37.17 33.31 0.00 (*) 25.33 39.32 35.26
MCC 0.00 (*) 8.76 14.00 77.23 | 0.00 (%) 19.04 12.42 68.46
Nesting Level 0.00 (*) 7.59 11.44 80.97 | 0.02 (%) 13.82 10.35 75.75
wWMC 0.57 13.17 11.68 75.14 | 0.00 (%) 28.58 6.74 64.68
Documentation metrics Documentation Lines of Code 051 8.15 8.09 83.76 | 0.00 (*) 10.71 4.32 84.97
Comment Density 0.88 33.54 36.07 30.38 | 0.00 (*) 20.64 34.02 45.34
API Documentation 0.00 (*) 11.17 42.61 46.22 | 0.00 (*) 10.62 38.77 50.60
Public Undocumented API 0.00 (*) 5.33 37.86 56.82 | 0.00 (*) 9.33 34.02 56.65
Public Documented API 0.00 (*) 2.23 49.43 48.34 | 0.00 (*) 3.11 43.26 53.63
Size metrics # Parantheses 0.94 10.27 10.77 78.96 0.83 10.93 12.33 76.66
File Lines of Code 0.00 (*) 31.04 23.71 45.25 | 0.00 (*) 44.47 13.82 41.71
Method Lines of Code 0.53 24.94 24.72 50.33 | 0.00 (%) 30.55 20.53 48.84
Coupling metrics Number of Incoming Invocations 0.00 (*) 46.88 3.07 50.06 | 0.00 (*) 26.60 0.69 72.71
Response set For Class 0.00 (*) 23.20 8.99 67.81 0.00 (*) 22.97 5.87 71.16
Cohesion metrics Lack of Cohesion in Methods 5 042 4.12 4.87 91.01 0.31 4.84 4.58 90.59

19

Results: Source Meter

Readability Commits

Non-Readability Commits

Category Metric
P-Value % Increase! % Decreasel % Equal P-Value % Increase! % Decrease) % Equal
Complexity metrics Halstead Difficulty 0.24 28.12 26.72 45.14 0.00 (*) 34.77 26.40 38.74
Halstead Effort 0.00 (*) 28.40 30.08 38.34 0.00 (*) 37.58 26.32 31.54
alctos > ~e P S 2 ‘; ’)S 7 * ’; 7 s’)
Maintainability Index 0.03 (*) 29.52 37.17 33.31 0.00 (%) 25.33 39.32 35.26
MCC 0.00 (*) 8.76 14.00 77.23 0.00 (*) 19.04 12.42 68.46
Nesting Level 0.00 (*) 7.59 11.44 80.97 0.02 (*) 13.82 10.35 75.75
WMC 0.57 13.17 11.68 75.14 0.00 (*) 28.58 6.74 64.68
Documentation metrics Documentation Lines of Code 0.51 8.15 8.09 83.76 0.00 (*) 10.71 4.32 84.97
Comment Density 0.88 33.54 36.07 30.38 0.00 (*) 20.64 34.02 45.34
API Documentation 0.00 (*) 11.17 42.61 46.22 0.00 (*) 10.62 38.77 50.60
Public Undocumented API 0.00 (*) 5.33 37.86 56.82 0.00 (*) 9.33 34.02 56.65
Public Documented API 0.00 (*) 2.23 49.43 48.34 0.00 (*) 3.11 43.26 53.63
Size metrics # Parantheses 0.94 10.27 10.77 78.96 0.83 10.93 12.33 76.66
File Lines of Code 0.00 (*) 31.04 23.71 45.25 0.00 (*) 44.47 13.82 41.71
Method Lines of Code 0.53 24.94 24.72 50.33 0.00 (*) 30.55 20.53 48.84
Coupling metrics | Number of Incoming Invocations 0.00 (%) 46.88 3.07 5(_).(% 0.00 () 26.60 0.69 72.71 |
Response set For Class 0.00 (*) 23.20 8.99 67.81 0.00 (*) 22.97 5.87 71.16
Cohesion metrics Lack of Cohesion in Methods 5 042 4.12 4.87 91.01 0.31 4.84 4.58 90.59

Some metrics such as Number of Incoming Invocations
can be used to complement readability models

20

Research
Question #3

What types of changes do developers
perform during readability
improvements?

21

checksty e

e Checks source code adherence to configurable rules

* Used the two style configurations provided by
checkstyle: google and sun checks

* Enabled a check for magic numbers

replaced magic number with more readable constant
P master © v0.18.2 ... v0.181

™ MariusVanDerWijden committed on Jan 26

[1] http://checkstyle.sourceforge.net/

22

http://checkstyle.sourceforge.net/

Results: Checkstyle

. Readability Non-Readability

Warning @

Before After Delta Before After Delta
AvoidStarImport 15.78% 7.96% 7.82%|@ 10.06% 11.3% T 1.24%
WhitespaceAfter 34.17% 26.82% 7.35% 1635% 18.62% 1 2.27%
WhitespaceAround 32.13% 25.87% 6.25% 19.56% 21.23% 1 1.67%
CommentsIndentation 17.36% 12.57% 479% 12.03% 12.71% T 0.68%
UnusedImports 17.27% 14.42% 285% 13.14% 14.08% 1 0.94%
RightCurly 1430% 12.05% 225% 1032% 11.39% 1 1.07%
MagicNumber 36.58% 35.00% 1.59% 223% 2539% |1 3.08%'@
NonEmptyAtclauseDescription 36.98% 34.92% 2.06% 6.85% 7.28% 1 0.43%
ParenPad 8.94% 7.16% 1.78% 122% 14.55% 1 2.35%
NeedBraces 23.26% 21.78% 1.48% 14.21% 1524% 1 1.03%

e Readability commits fix problems that pertain to imports, white spaces, and braces
® Non-readability commits introduce these problems

23

ChangeDistiller

e Categorizes statement level changes in source code
e Can detect 41 changes in 4 categories: move, update, insert
and delete.
o Comment Insert
o Attribute Renaming
o Statement Ordering Change

[1] https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

24

https://bitbucket.org/sealuzh/tools-changedistiller/wiki/Home

Results: ChangeDistiller

Change

Non-Readability

Delete

REMOVED_OBIJECT_STATE
COMMENT_DELETE
ALTERNATIVE_PART_DELETE
REMOVED_FUNCTIONALITY
STATEMENT_DELETE

Insert

COMMENT_INSERT
ADDITIONAL_OBJECT_STATE
ADDITIONAL_FUNCTIONALITY
STATEMENT_INSERT
PARAMETER_INSERT

Move

STATEMENT_ORDERING_CHANGE
STATEMENT_PARENT_CHANGE

Update

METHOD_RENAMING

DOC_UPDATE
ATTRIBUTE_RENAMING
CONDITION_EXPRESSION_CHANGE
STATEMENT_UPDATE

Readability
Overall Group
1.45% 4.90%
1.27% 4.31%
0.73% 2.46%
2.04% 6.89%
22.05% 74.50 %
0.73% 3.84%
1.72% 9.07%
2.87% 15.12%
10.76% 56.74 %
1.06% 5.60%
2.87% 37.42%
4.46% 58.06%
0.53% 1.21%
1.27% 2.91%
2.74% 6.26%
5.87% 13.42%

70.61 %

Overall Group
1.19% 497%
1.24% 5.15%
1.43% 5.96%
2.42% 10.07%

16.93% 70.42%
1.93% 4.65%
3.14% 7.55%
4.68% 11.26%

65.12%
0.95% 227%

19.45%
6.53% 75.41%
0.70% 2.70%
0.96% _ 3.72%
0.54%
3.49% 13.56%

72.59%

25

RefactoringMiner

Detects refactorings across the history of a Java project
and provides a high level overview of the types of
changes being made.

o Extract Method

o Parameterize Variable
e« Move Method

[1] https://github.com/tsantalis/RefactoringMiner

1>

26

https://github.com/tsantalis/RefactoringMiner

Results: RefactoringMiner

Readability Non-Readability

Refactoring # %0 # %0 R f t . h t t
Extract And Move Method 6 0.72% 0 0.00% e ac O rl ngs Suc as eX rac
Extract Class 1 0.12% 0 0.00% . .

|Extract Method 124 14.94% 0 0.00% mEthOd, Inllne methOd,

Extract Operation 0 0.00% 30 15.00% . .

Extract Variable 37 446% 19 950 parameterize variable, and
{Inline Method 68 8.19% 0 0.00%|

Inline Operation 0 000% 1 0.50% 1fi

Inline Variable 15 1.81% 2 1.00% rename CIaSS are SpECIfIC to
Move Attribute 1 0.12% 0 0.00% ‘] .

Move Class L oona osoe. readability commits, and
Move Method 1 0.12% 0 0.00% o

{Parameterize Variable 18 2.17% 2 1.00% a I m Ost non-exi Ste nt fo F NON-
Rename Attribute 183 22.05% 19 9.50%

[Rename Class 31 3.73% 1 0.50% th 1

Rename Method 9% 11.57% 57 28.50% reada bl I Ity Com m Its

Rename Parameter 73 8.80% 16 8.00%

Rename Variable 170 20.48% 50 25.00%

Replace Variable With Attribute 5 0.60% 2 1.00%

27

e There is a need for models that can capture
readability improvements in practice

e Some metrics considered in existing

readability models do not capture
Ta keaways readability improvements in practice

e In addition to static analysis tools, warnings
from code style tools and types of changes

made could be considered for readability
models

Thank You!

